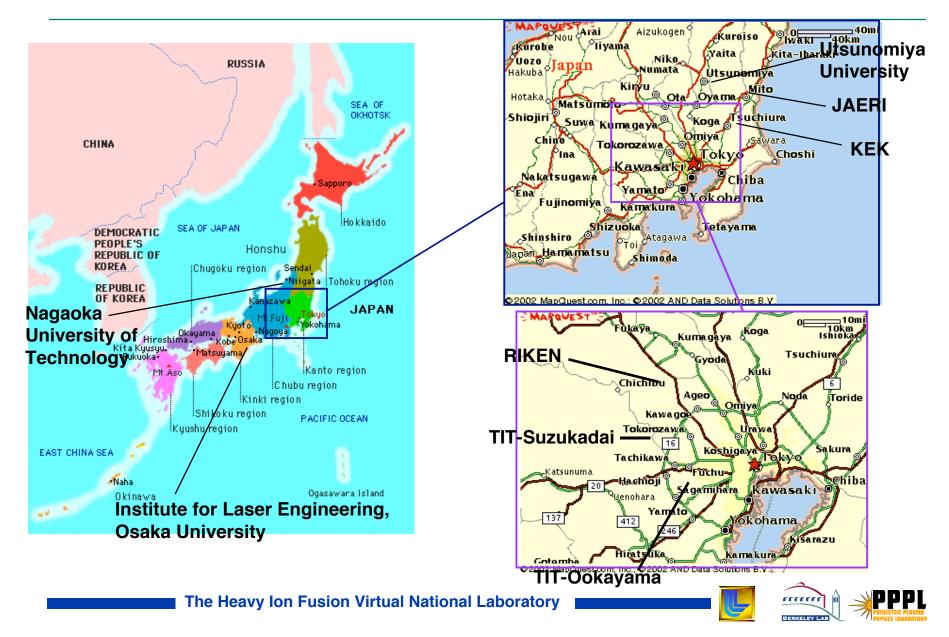

U.S.-to-Japan Exchanges in HIF

John J. Barnard


US-Japan Workshop June 10-12, 2004 Princeton, NJ

Recent US exchanges to Japan have taken place at six institutions

Location of institutions in Japan

US/Japan collaboration on HIF began with a series of workshops: primarily information exchanges

March 13-15, 1997	Osaka
November 12-14, 1997	Berkeley
December 7-9, 1998	Tokyo
March 11, 2000	San Diego
December 7-8, 2000	Tokyo
March 4-5, 2002	Berkeley, Livermore
June 10-12, 2004	Princeton

US-to-Japan Exchanges (2001-2002)

Ion Source Development (October 13, 2001- October 26, 2001)

- J. Kwan -> M. Ogawa, Tokyo Institute of Technology, JAERI
 - Laser based ion sources

- Collaborated on an experiment using a controlled extraction grid to measure rise time of a short beam pulse (~200 ns) relevant to IBX

- work contributed to publication: (J. Hasegawa; M. Yoshida; M. Ogawa; Y. Oguri1; M. Nakajima; K. Horioka; J. Kwan, "Influence of Grid Control on Beam Quality in Laser Ion Source Generating High-Current Low-Charged Copper Ions", (IFSA2003).

Theory and Modeling of Space-Charge Effects (February 18-22, 2001) J. Barnard/S. Lund -> T. Yabe (TIT), T. Katayama, (RIKEN), S. Kawata, (Utsunomiya), T. Horioka (TIT), M. Ikegami, S. Machida(KEK)

- Made/heard presentations and had fruitful discussions at all 5 institutions; Topics included: WARP, HERMES, bunch compression in rings and linacs, emittance growth; CIP method, dielectric wall neutralization, compact bunch compressor, FFAG accelarators, halos....

US-to-Japan Exchanges (2002-2003)

Workshop on Induction Accelerators and Their Applications, October 29-31, 2002, at KEK (organized by T. Horioka and K. Takayama) J. Barnard, M. Leitner, W. Waldron from VNL (G. Caporaso, Y-J. Chen, E. Cook from LLNL, R. J. Briggs, SAIC)

- heard presentation on varied uses and technology advances in induction accelerators, including induction synchrotron
- began collaboration on a book on induction accelerators (now in progress)

Theory and Modeling of Space-Charge Effects, March 10 - 13, 2003, H. Qin, D. Grote -> S. Kawata (Utsunomiya), T. Horioka, M. Ogawa (TIT), T. Katayama (RIKEN)

-had fruitful discussions on beam dynamics and numerical simulations at all three institutions.

Summary of induction accelerator architectures

Architecture	Focusing	Advantages	Remarks
Linacs:			
Induction Linac (e ⁻)	Solenoid	High peak power; High efficiency;	
Induction Linac (HI ⁺)	Quads	High peak power; Longit. compress.	
Dielectric Wall Accel.	Magnetic/ Electrostatic	Very high gradient	<~ few 100 ns early dev.
Rings:			
Induction Synchrotron	Quads	Current const. over super bunch; Higher luminosity	
Induction barrier bucket	Quads	Highly flexible waveform shape;	DARHT kicker POP for modul.
Induction buncher	Quads		
Induction FFAG	FFAG	Compact, low cost;	Larger phase sp.
Induction recirculator	Quads (static)	Low cost;	Vacuum; Dipole losses; Resonance trav.

Summary of applications for induction accelerators

Application/ Architechture	Voltage	Beam Current	Pulse length	Rep. rate	Issues/comments
Hadron collider/ p ⁺ ind. synchrotron	31 TeV; 3 MeV/turn	25 A	500 ns	100 kHz CW	feasibility study going on; require upgrade of most existing detector components for higher L. competitor: low harmonic rf
RK Two Beam Acc for Linear Colliders/e ⁻ ind. linac	10 MeV, 0.3 MeV/m	1 kA	50 - 200 ns	180 Hz	fundamental aspect has been demonstrated; no current funding
Neutrino factory;μ- collider / μ –ind. linac	200 MeV 2 MeV/m		100 ns	4 pulse @ 3 MHz; 15 Hz avg.	feasibility study going on; competition with low freq rf device; can survive rad. env.;
Heavy Ion Fusion/ HI ⁺ ind. linac	4 GeV 1.5 MeV/m	0.2 - 10 kA	20 μs - 10 ns	~6 Hz	Significant program ongoing

Summary of applications for induction accel's-cont'd

Application/ Architechture	Voltage	Beam Current	Pulse length	Rep. rate	Issues/comments
Spallation n- source/ p⁺ ind. linac	1 GeV	60 - 100 A	1600 - 160 ns	50 Hz	Will be easier to sell if induction technology more widespread
Radiography/ e ⁻ ind. linac	18.4 MeV	2-4 kA	~50 ns	~2 MHz bursts of 4 pulses	DARHT-II built and undergoing testing. Ion-hose, beam-target interactions AHF to use protons/synch.
Sub-critical reactor/ ind. FFAG; H- driver for spallation n- source; Accel. Trans. Waste (H- ind. FFAG)	~ 1 GeV 1-3 GeV	30 mA 10 mA (avg)	~few 100 ns	1 kHz CW	May combine rf + ind.(Ind barrier only); cost/MW beam power is low rel. to rf linac; early design, at idea stage
Driver for Microwave source FEL's, BWO	∼few MeV	~kA	~few 100 ns	~kHz	Very attractive match

US-to-Japan Exchanges (2003-2004)

Space charge and dispersive effects in the bunch compression of a heavy ion beam in a ring, S. Lund-> T. Katayama, T. Kikuchi, (RIKEN), M. Ogawa, (TIT)

- Collaborated with Dr. Kikuchi to implement WARP code on beam dynamics problems at RIKEN

- Collaborated with Dr. Katayama, on effects of space charge and dispersion during bunch compression, with goal of optimizing design of future bunching rings at RIKEN, with possible HEDP applications

Multielectron Losses Due to Heavy Ion – Atom Collisions/ Negative Ions May 17 - 21, 2004, L. Grisham -> Dr. Nakagawa (RIKEN) and Y. Oguri (TIT)

> - Looked at feasibility of using RILAC at RIKEN to accelerate singly charged negative ions and measure cross-section for neutralization (Hope to use similar ion of positive charge for direct comparisons)

The state of the US-Japan collaboration

US-Japan researchers are part of a small but well integrated community; Professional relationships across the Pacific are being developed.

Informational exchanges have been tangible, and collaborations have started to develop.

Areas of potential collaboration include:

- Induction modulator and induction core material research
- Bunch compression in rings and linacs
- Final focus using using a plasma lens or solenoids as the final optic Neutralization during final focus
- Vlasov modeling of beams using PIC and a direct, semi-Lagrangian
 - CIP method; (Fluid simulations in chamber may also benefit from codes using CIP method).
- Source and injector physics and technology
- Negative ion cross-section measurements
- **High Energy Density Physics**

Both countries benefit politically from the involvement in each other's program.