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Beam theory studies at the US Heavy Ion Fusion Virtual National 
Laboratory are focused on the dynamics and instabilities of high
intensity beams, and beam-plasma interaction.

Instability study.

Beam compression and final focusing.

Chamber transport.



Nonlinear Kinetic Stability Theorem

• An important feature of intense beam propagation is the existence of a
stability theorem based on the nonlinear Vlasov-Maxwell equations.∗

• For a long, one-component coasting beam in the smooth-focusing ap-
proximation, the stability theorem expressed in the beam frame (βb = 0
and γb = 1) states that any equilibrium distribution function f0b (H) that
satisfies

∂

∂H
f0b (H) ≤ 0

is nonlinearly stable to perturbations with arbitrary polarization.

• Here, H = (p2r + p2θ + p2z)/2mb+mbω
2
f r
2/2 + ebφ

0(r) is the single-particle

Hamiltonian in the beam frame, and φ0(r) is the electrostatic potential
determined self-consistently from Poisson’s equation.

• A necessary condition for instability is that the beam distribution function
have some nonthermal feature such as an inverted population in phase
space, or a strong energy anisotropy, or that the beam have directed
kinetic energy relative to background charge components.

∗R. C. Davidson, Phys. Rev. Lett. 81, 991 (1998).
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Collective Instabilities in Intense Charged Particle Beams

One-Component Beams

• Electrostatic Harris instability (T‖b/T⊥b < 1)

• Electromagnetic Weibel instability (T‖b/T⊥b < 1)

Propagation Through Background Electrons

• Electron-ion two-stream (Electron Cloud) instability

Propagation Through Background Plasma

• Resistive hose instability

• Multispecies Weibel instability

• Multispecies two-stream instability
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Harris Instability in Intense One-Component Beams

• Electrostatic Harris instability∗ can play an important role in multispecies
plasmas with temperature anisotropy T‖j < T⊥j.

• Harris instability is inherently three-dimensional and involves a coupling
of the longitudinal and transverse particle dynamics.

• Harris-like instability† also exists in intense one-component beams pro-
vided the anisotropy is sufficiently large (T‖b/T⊥b � 1) and the beam
intensity is sufficiently large.

∗E. G. Harris, Phys. Rev. Lett. 2, 34 (1959).

†I. Haber, et al., Phys. Plasmas 6, 2254 (1999).
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Weibel Instability in Intense One-Component Beams

• The electromagnetic Weibel instability∗ can play an important role in
multispecies anisotropic plasmas and beam-plasma systems.

• However, the Weibel instability is not likely to play an important role in
one-component nonneutral beams:

– Constraints imposed by finite transverse geometry.

– Electrostatic Harris instability has a much larger growth rate in the
region where the Weibel instability exists.

∗E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).
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Weibel Instability in Intense One-Component Beams

Assume axisymmetric perturbations (∂/∂θ = 0) and transverse electromag-
netic fields with polarization

δET = δEθêθ , δBT = δBrêr+ δBzêz

Analysis of the linearized Vlasov-Maxwell equations leads to an infinite di-
mension matrix dispersion equation∗

det{Dn,m(ω)}= 0

which is valid for arbitrary normalized beam intensity

sb =
ω̂2pb

2γ2b ω
2
f

and temperature anisotropy T‖b/T⊥b. Here, ω̂pb = (4πn̂be
2
b /γbmb)1/2 is the ion

plasma frequency.

∗E. A. Startsev and R. C. Davidson, Phys. Plasmas 10, 4829 (2003).
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Weibel Instability in Intense One-Component Beams

In the limit T‖b/T⊥b → 0, the maximum growth rate of the Weibel instability
is

(Imω)max = 0.85ω̂pb
vth
⊥b

c

for k2z r
2
b � 1.

Detailed numerical analysis of matrix dispersion relation equation for finite T‖b
shows that the Weibel instability is completely stabilized whenever T‖b exceeds
the small threshold value T th

‖b defined by

T th
‖b

T⊥b

= 0.2
r2b ω̂

2
pb

c2
� 1
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Electron-Ion Two-Stream (Electron Cloud) Instability

• A background population of electrons can result when energetic beam
ions strike the chamber wall or ionize background gas atoms.

• Relative streaming motion of beam ions through the background elec-
trons provides the free energy to drive the classical two-stream instability,
appropriately modified to include the effects of dc space charge, relativis-
tic kinematics, transverse beam geometry, etc.

• Experimental evidence for two-stream instability in proton machines such
as the Proton Storage Ring (PSR) experiment at Los Alamos National
Laboratory.
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Electron-Ion Two-Stream (Electron Cloud) Instability

• Instability is three-dimensional in nature, with strongest growth exhibited
by dipole-mode perturbations with azimuthal mode number m = 1. This
is a common feature of experiments, analytical theory, and numerical
simulations.

• 3D nonlinear delta-f simulations by Qin, et al., using the BEST code,
have investigated detailed properties of this instability for a wide range of
system parameters. Simulations use a smooth focusing model in which
the electrons are confined in the transverse plane by the (excess) space
charge of the beam ions.

• Detailed analytical investigations of linear stability properties have also
been carried out for arbitrary multipole perturbations about a Kapchinskij-
Vladimirskij (KV) distribution with step-function density profile.
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Electron-Ion Two-Stream (Electron Cloud) Instability

As a simple example, consider dipole-mode perturbations about a KV distri-
bution. Assume cold beam ions with axial velocity Vb propagate through a
stationary electron background (Ve = 0).

Dispersion Relation

[(ω − kzVb)
2 − ω2b ][ω

2 − ω2e ] = ω4c ,

Definitions

ω4c =
1

4
f

(
1− r2b

r2w

)2
γbmb

Zbme
ω̂4pb

ω2b = ω2f +
1

2
ω̂2pb

(
f − 1

γ2b

r2b
r2w

)

ω2e =
1

2

γbmb

Zbme
ω̂2pb

(
1− f

r2b
r2w

)

where
f = fractional charge neutralization

ω̂pb =

(
4πn̂bZ

2
b e
2
b

γbmb

)1/2
= ion plasma frequency
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Electron-Ion Two-Stream (Electron Cloud) Instability

Growth Rate Reduction Mechanisms

• Axial momentum spread in the beam ions.

• Proximity of a conducting wall.

• Reduction in fractional charge neutralization.

• Rounded beam density profiles

– Spread in transverse oscillation frequency.
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Outline

➱ Self-similar symmetry if required for focusing the entire beam pulse.

➱ Longitudinal Dynamics.

❍ Self-similar solutions for un-neutralized beams.

❍ Self-similar solutions for neutralized beams.

❍ Pulse shaping

➱ Transverse Dynamics and Final Focus.

❍ Non-periodic lattice and adiabatically-matched beams.

❍ Time-dependent lattice for deviation from self-similar symmetry.
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Need Self-Similar Symmetry To Focus the Entire Beam Pulse

➱ a, b, λ, εx, and εy for different Z are generated by the same solution through a
one-parameter group transformation admitted by the envelope equations




a [s, Z(δ = 0)]
b [s, Z(δ = 0)]
λ [s, Z(δ = 0)]
εx [s, Z(δ = 0)]
εy [s, Z(δ = 0)]


 −→




a [s, Z(δ)]
b [s, Z(δ)]
λ [s, Z(δ)]
εx [s, Z(δ)]
εy [s, Z(δ)]


 .

➱ It is easy to check that the following scaling group is a symmetry group of the
envelope equations.




a [s, Z(δ)]
b [s, Z(δ)]
λ [s, Z(δ)]
εx [s, Z(δ)]
εy [s, Z(δ)]


 =




δa [s, Z(δ = 0)]
δb [s, Z(δ = 0)]
δ2λ [s, Z(δ = 0)]
δ2εx [s, Z(δ = 0)]
δ2εy [s, Z(δ = 0)]






Lie Group Symmetry Analysis

➱ The systematic method for finding similarity solutions (group-invariant solu-
tions) for PDEs is the Lie group symmetry analysis.

➱ Two types of point symmetries can be used.

❍ Classical point symmetry, which transfers a solution of the PDEs into an-
other solution.

❍ Non-classical point symmetry, under which a solution is invariant.

➱ The symmetry groups of both types are determined by the corresponding in-
finitesimal generators.

❍ Classical point symmetry: linear and algorithmically solvable dertmining
equations. Infinitesimal generators form a Lie algebra.

❍ Non-classical point symmetry: nonlinear and non-algorithmically-solvable
dertmining equations. No infinitesimal Lie algebra.

➱ Once point symmtries are found, similarity solutions can be derived straightfor-
wardly.



Longitudinal Dynamics – 1D fluid model

➱ In the beam frame:

∂λ

∂t
+

∂

∂z
(λuz) = 0 (continuity),

∂uz

∂t
+ uz

∂uz

∂z
+

e2g

mγ5

∂λ

∂z
+

κzz

mγ3
+

r2
b

mγ3λ

∂pz

∂z
= 0 (momentum),

∂pz

∂t
+ uz

∂pz

∂z
+ 3pz

∂uz

∂z
= 0 (energy).

➱ Nonlinear hyperbolic PDE system

➱ The energy equation is equivalent to

d

dt
(
pz

λ3
) = 0.



Self-Similar Drift Compression for Neutralized Beams

➱ Drift compression for neutralized beams modelled by the 1D Vlasov eq.

∂f

∂t
+ vz

∂f

∂z
= 0 .

➱ The general solution is a function of two trivial invariants,

f(t, z, vz) = f(0, z − vzt, vz) .

➱ A class of self-similar drift compression solutions can be more easily con-
structed using Courant-Snyder invariant

χ =
z2

z2
b (t)

+
z2

b (t)

z2
b0v

2
T0

[
vz − z′b(t)

z

zb(t)

]2

,

d2zb(t)

dt2
=

z2
b0v

2
T0

z2
b (t)

.

z2
b (t) = (zbo + z′b0t)

2 + v2
T0t

2 ,

where z′b0 = (dzb/dt)t=0 and vT0 is an effective thermal speed.



Density Inversion Theorem

➱ For a given self-similar line density profile, the corresponding distribution func-
tion is

f(χ) = − 1

π

λb(t)zb(t)

zb0vT0

∫ ∞

χ

∂h(Z2)

∂Z2

dZ2√
Z2 − χ

.

➱ For the family of self-similar line density profiles

λ(t, z) = λb(t)h(Z2) =

{
λb(t)(1 − Z2)n, Z ≤ 1,

0, Z > 1 .
,

f(χ) =

{
− 1√

π
λb(t)zb(t)

zb0vT0
(1 − χ)n−1/2 Γ(n)

Γ(n+1/2)
, χ ≤ 1,

0, χ > 1 .

❍ n = 1 and λ ∼ 1 − Z2,the distribution function f ∼ √
1 − χ when χ ≤ 1.

❍ n = 1/2 and λ ∼ √
1 − Z2, f is a flat-top function of χ.

❍ n < 1/2, the distribution function diverges near χ = 1.



Density Inversion Theorem

➱ Another family of self-similar line density profiles

λ(t, z) = λb(t)h(Z2) =

{
λb(t)(1 − Z2n), Z ≤ 1,

0, Z > 1 .
.

f(χ) =




− 1
π

λb(t)zb(t)
zb0vT0

[√
πnχ2n−1/2 Γ(1/2−2n)

Γ(1−2n)

+ 4n
4n−1

F (1
2
, 1

2
− 2n; 3

2
− 2n; χ)

]
, χ ≤ 1,

0, χ > 1 .

➱ F (1
2
, 1

2
− 2n; 3

2
− 2n; χ) —hypergeometric function.

➱ 2n 	 1 −→ arbitrarily flat line density profiles.
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Example: Pulse Shaping with Compression

➱ For the case of a beam being shaped but not compressed, α = 1 and V (ξ =
1) = 0. When α > 1, the beam is simultaneously being shaped and compressed,
and V (ξ = 1) < 0.

➱ Initial pulse shape Λ(z) = 1− z15 and final pulse shape ΛT (z) = (135/32)(1−
9z2) are plotted in (a). The initial velocity V (z) is plotted in (b).
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Correction for Deviation from the Symmetry

➱ To focus entire beam pulse onto the same focal, the self-similar symmetry con-
dition need to be satisfied.

➱ Self-similar drift compression scheme satisfies the symmetry condition for the
line density.

➱ It is difficult to guarantee the symmetry condition for the transverse emittance
due to the complex dynamical behavior.

❍ Longitudinal compression

❍ Non-periodic transverse focusing lattice and final focus magnets.

➱ However, in most heavy ion fusion systems, the transverse emittance is small.

➱ The deviation from the self-similar symmetry condition due to the transverse
emittance can be treated as a perturbation.

➱ Deliberately impose another perturbation to the system to cancel out the pertur-
bation due to the un-symmetric transverse emittance.



Time-Dependent Lattice for Entire Pulse

➱ However, the emittance in general is small but not negligible, and does not scale
with the perveance.

➱ In fact, during adiabatic drift compression, the emittance scales with the beam
size, i.e., εx ∝ a and εy ∝ b.

➱ Self-similar symmetry condition can’t be satisfied.

➱ Vary the strength of four magnets in the very beginning of the drift compression
for different value of z such that the self-similar symmetry holds at s = sff .

➱ Numerically, the necessary variation of the strength of the magnets is found by
a 4D root-searching algorithm.

➱ A small perturbation in the strength of the magnets introduces a small envelope
mismatch in such a way that the self-similar symmetry is satisfied at s = sff .
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Transverse Dynamics for Central Slice
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Envelope dynamics for the z/zb(s) = 0.968.
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Time-Dependent Lattice for Entire Pulse
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Figure 1: Strengths of the 3rd, 5th, 7th, and 9th magnets as functions of
z/zb(s).
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System of EquationsSystem of Equations
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SteadySteady-- State Results (current flow)State Results (current flow)

FOR MORE INFO...

http://hifnews.lbl.gov/hifweb08.html

Beam propagates in the y-direction, 
beam half length lb=15 c/ ωωωω p ; 
beam radius rb =1.5 c/ ωωωω p ; 
beam density nb is equal to the 
background plasma density np; 
beam velocity Vb=c/2. 

Shown are the normalized electron 
density ne/np and the vector fields 
for the current.
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Analytic theory of chamber transport: excitation of Analytic theory of chamber transport: excitation of 
plasma waves by beam depends on bunch lengthplasma waves by beam depends on bunch length

ββββb=0.5,  lb/rb =10, nb/np=0.5  a) lb= 2Vb/ωωωωp , b) lb= 6Vb/ωωωωp , c) lb= 20Vb/ωωωωp .
Red line: ion beam size,  brown lines: electron trajectory in beam frame



Ion Beam Interaction with Background Plasma

Candidate Instabilities

• Resistive Hose

• Multispecies Weibel

• Multispecies Two-Stream
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Resistive Hose Instability

Assumptions

• Step-function density profile.

• Transverse electromagnetic dipole-mode perturbations

δET = δEzêz , δBT = δBrêr+ δBθêθ

• Charge neutralizing plasma background
∑

j=b,e,i

n0j (r)ej = 0

• Partial current neutralization

Jzp = −fm(n̂bebβbc)
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Resistive Hose Instability

Dipole-mode perturbations with

δEz(x, t) = δÊz(r) exp[i(θ −Ωz/Vb − ωτ)]

where Ω = ω − kzVb.

Dispersion relation is given by

ω̂2pbβ
2
b

Ω2 − ω2β
= −κprb

J ′
1(κprb)

J1(κprb)
− r2w+ r2b

r2w − r2b
,

where

ω2β =
1

2
ω̂2pbβ

2
b (1− fm) ,

κ2p(ω)r
2
b =

8iωτd
(1− iω/νc)

.
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Resistive Hose Instability

Illustrative Example

• 1 kA, 2.5 GeV cesium beam.

• n̂b = 3.4× 1011cm−3; beam radius rb = 1cm.

• Zero plasma return current (fm = 0).

• For Te = 1 eV and n̂e = 1012cm−3 we obtain:

σp = 3× 1012s−1(conductivity)

τd =
πσpr2b
2c2

= 5× 10−9s(magnetic decay time)

• Resulting growth rate is

ImΩ = 0.13ωβ

where ωβ = 9.2× 106s−1.
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Resistive Hose Instability

Growth Rate Reduction Mechanisms

• Proximity of a conducting wall.
– Increasing g =

(
1− r2b

r2w

)−1
.

• Increasing the value of |ω|/νc.

• Decreasing the value of fractional current neutralization fm.

– Stabilizing influence of Bθ.

• Rounded beam density profile.

– Reduces number of resonant beam particles.

• Increase electron temperature.
– Higher plasma conductivity.
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Resistive Hose Instability
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Instability growth rate is reduced by increasing values of |ω|/νc and by the
proximity of a conducting wall, i.e., increasing g =

(
1− r2b

r2w

)−1
.
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Beam modeling and simulation play important roles in the 
research projects at the US Heavy Ion Fusion Virtual National 
Laboratory.

Algorithm and code development.

Large-scale parallelization and visualization. 

Simulation and experimental observation. 

Simulation and theoretical predication.



Numerical modeling poses formidable challenges

Challenges in accelerator modeling include 
efficient but detailed description of applied fields
time-dependent space-charge limited emission in 3-D
107 - 108 particles, ~ 105 steps, > 100 cells in x and y, 1000’s 
in z
multi-beam effects

Challenges in chamber modeling include
complex physics models
dense plasma; need implicit hybrid model
large grid, esp. for multi-beam runs; 107 - 108 particles

Comparisons with experiment can be difficult 
quadrupole focusing ⇒ sensitivity to diagnostic locations
diagnostics are typically projections of phase space



Time scales in driver and chamber span a wide range
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in magnet pulse

electron drift
out of magnet
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lattice
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thru
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fields

beam
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pulse log of timescale
in seconds

In driver

In chamber
τpi

τpb

Scale lengths range from electron gyroradius in magnet ~.01 mm to lD,beam ~ 1 
mm, to beam radius ~ cm, to machine length ~ km's



HIF Computer Codes
The HIF Virtual National Laboratory has developed a suite of computer codes for modeling beam injection, 
acceleration, transport, and focusing in induction accelerators and transport in a fusion chamber. Our goal 
is an integrated, detailed, and benchmarked source-to-target beam simulation capability.

WARP An electrostatic code with envelope,  
PIC, and Vlasov models to examine beam 
injection and transport.

LSP   An implicit electromagnetic PIC code 
with a particle-fluid electron model for modeling 
high-density plasmas.

BEST    A nonlinear perturbative PIC code for 
studying questions of beam stability and halo 
formation.

waves on beam

beam ions Flibe ions   electrons
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HIF is at the forefront of beam and plasma simulation

In collaboration with NERSC, we are pioneering the use of
Adaptive Mesh Refinement (AMR) in 3-D beam and plasma 
particle simulations.  The AMR technique, originally 
developed in fluid mechanics, provides a “numerical zoom” 
capability that gives high resolution only where it is needed, 
allowing a major reduction in the size and cost of 
computations. Sample calculations show a fourfold reduction 
in computational cost with nearly identical results.

Semi-Lagrangian Vlasov beam 
simulations advance the phase-space 
density on a multi-dimensional grid.  Such 
methods, currently under development, 
offer the promise of a large dynamic 
range.  In contrast with discrete-particle 
methods, Vlasov methods represent the 
low-density parts of phase space with 
fidelity similar to that of the main beam, 
thus facilitating study of the physics of 
beam halos.

3-D δf code BEST shows structure of 
two-stream mode
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The novel feature of BEST is its use of the so-called δf method, in which 
equations for deviations from a known, unperturbed, but in general time-
dependent beam equilibrium are advanced. When perturbed quantities 
are sufficiently small, this approach has several advantages over 
conventional PIC codes.
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Prototype AMR implemented in WARPrz

0.0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1.0  Low res.   Medium res.

 High res.  Low res. + AMR

4ε
N

R
M

S (
π 

m
m

.m
ra

d)

Z(m)

• Higher speedup obtained with a “true” 
dynamic AMR implementation

Z (m)

R
 (m

)

In this case: speedup ~ 11.3

~1M56x64
0

Low res. + 
AMR

~16M224x2
560

High res.
~4M112x1

280
Medium res.

~1M56x64
0

Low res.
Nb 

particles
Grid 
size

Run

Low res. Medium res.

zoom

Z (m)

R
 (m

)



Phase Space at End of Diode

Warp simulations Experimental results

Rise time

Current at Faraday cup

Experiment
Theory

150 kV
48A heater

Result depends critically on
Mesh Refinement

WARP simulations model STS-500 experiments using
10-cm-diameter K+ alumino-silicate source

 (simulations by
I. Haber, J-L.
Vay, D. P. Grote)



3D WARP simulation of HCX shows beam head scrapping
Rise-time τ = 800 ns

beam head particle loss < 0.1%

z (m)

z (m)
x 

(m
)

x 
(m

)

Rise-time τ = 400 ns
zero beam head particle loss

• Can we get even cleaner head with faster rise-time? 

• Optimum?
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WARP simulations of the UMER electron gun reproduce
some features of the observed velocity space

Beam velocity distribution emerging
from the gun, measured as a phosphor
screen image of the beam after
passage through a small hole (simulations by I. Haber / R. Kishek)



Harris Instability in Intense One-Component Beams
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Harris Instability in Intense One-Component Beams
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Harris Instability in Intense One-Component Beams
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Time history of the normalized density perturbation δnmax/n̂b for sb = 0.8 and
T‖b/Tb = 0.02 at fixed axial position z and radius r = 0.3rb.
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Electron-Ion Two-Stream (Electron Cloud) Instability

BEST simulations have been carried out for 3D perturbations about distri-
bution functions (j = b, e)

f0j (r,p) =
n̂j

2πγjmjT⊥j

exp
( − H⊥j

T⊥j

)
Gj(pz)

For the beam ions, take Gb(pz) to be a drifting Maxwellian centered at pz =
γbmbVb. For the background electrons take Ge(pz) to be a Maxwellian centered
at pz = 0.

Illustrative Parameters

Linearized δF simulations for 2.5 GeV cesium ion beam with

f =
n̂e

n̂b

= 0.1 ,
Tb⊥

γbmbV
2
b

= 1.1× 10−6 ,
Te⊥

γbmbV
2
b

= 2.47× 10−6

The Heavy Ion Fusion Virtual National Laboratory



Electron-Ion Two-Stream (Electron Cloud) Instability

f

Time history of perturbed density δnb/ñb at a fixed spatial location. After an
initial transition period, the m = 1 dipole-mode perturbation grows exponen-
tially.

The Heavy Ion Fusion Virtual National Laboratory



Electron-Ion Two-Stream (Electron Cloud) Instability

The x−y projection (at fixed value of z) of the perturbed electrostatic poten-
tial δφ(x, y, t) for the ion-electron two-stream instability growing from a small
initial perturbation, shown at ωft= 3.25.

The Heavy Ion Fusion Virtual National Laboratory



Electron-Ion Two-Stream (Electron Cloud) Instability
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The maximum linear growth rate (Imω)max of the ion-electron two-stream
instability decreases as the longitudinal momentum spread of the beam ions
increases.

The Heavy Ion Fusion Virtual National Laboratory



Drift compression with pulse shaping

phase space at stagnation shows good end control
• about 12% of charge at stagnation is in ends
• large velocity swings during shaping introduce nonuniformity
• high final emittance may result from this nonuniformity 



(Simulations by D.Welch & D. Rose)

Preliminary LSP simulations for a modular IFE driver show
neutralized compression and focusing in a 100-m plasma column

Ne+ beam
Pulse energy: 140 kJ
Energy ramp: 200 - 240 MeV
Current: 3Æ140 kA
Beam radius: 10 cm Æ < 5 mm
Pulse duration: 210Æ 5 ns

Run shows filamentation,
but 92% of beam still
falls within the 5 mm
spot needed for a
hybrid distributed
radiator target

Other LSP simulations are
playing a major role in scoping
out the “NDCX” experiments to
begin in the near future



LSP is used to examine in some depth NDC 
instability and transport issues

With plasma plug
and RF PlasmaWith plasma plug 100% neutralization

NTX* 
MEASUREMENT

6-mA, 254-keV, 
2-cm K+ beam,  
with L = 1m

With plasma plug
and RF PlasmaWith plasma plug 100% neutralization

LSP
SIMULATIONS

LSP is being benchmarked in plasma 
neutralization experiments on NTX*See Th.I-5 P. Roy
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