Warm Dense Matter on Light Sources

- Been done (3rd generation sources)
- Being done (4th generation VUV-FEL)
- Will be done (4th generation LCLS)

Next generation x-ray light sources will be FELs ⇒10¹⁰ increases in Peak Brightness

- Current light sources are synchrotron radiation based
 - Circular machines
 - High duty cycle (> MHz)
 - Tunable over wide energy ranges
 - Low # of photons per bunch
 - Long bunch duration (≥ 50 ps)
- Next generation: FEL based
 - Short bunch duration (~100 fs)
 - Full transverse coherence
 - Low repetition rate (~100 Hz)
 - Tunable
 - High # of photons per bunch
- Possibilities for HED studies

FELs are unique for short pulse intense x-ray sources

	LXRL (5.9 nm)	SPPS (0.2 nm)	ALS/UXS (0.25 nm)	VUV-FEL (6.0 nm)	LCLS (0.1 nm)	EU-XFEL (0.1 nm)
mJ/pulse	0.3	3.8x10 ⁻⁵	2.4x10 ⁻¹⁰	0.3	2.6	3.7
Photons/pulse	9x10 ¹²	3x10 ⁷	3x10 ²	9x10 ¹²	2x10 ¹²	2x10 ¹³
Pulse Length (fs)	10 ⁵	80	100	200	230	100
GW	0.006	0.5	2.4x10 ⁻⁶	1.5	11	37
Peak Brightness	2.0x10 ²⁵	1.2 x10 ²⁵	1.0x10 ¹⁹	2.0x10 ³⁰	1.2x10 ³³	8.7x10 ³³
Bandwidth (%)	0.01	0.01	0.001	0.6	0.3	0.1
Hz	<< 1	30	10 ⁴	50	120	50
Date	now	2003	2005	2005	2009	2012

- LXRL = Laboratory X-Ray Laser
- SPPS, ALS / Slicing Source = modified 3rd generation sources
- VUV-FEL, LCLS, and EU-XFEL = 4th generation sources
- •4th generation is as much *laser* as light source

ON GOING

3rd generation light source probes what a short-pulse laser warms

- The original set-up was developed to look at rapid structural changes in solid (APS, ESRF, ALS)
- Method was extended to look at melting in other material
- Independent study of nanoparticle formation & metalinsulator transitions in supercritical fluids has been started

ALS WDM experiments lead to an understanding of the heating process

Phonon Spectroscopy

- Laser heats the crystal
- Crystal planes change their spacing
- Diffraction is thus modulated

- Measurement of phonon dispersion relations under highly non-equilibrium conditions
- Sensitive probe of electron-phonon coupling strengths.
- Structural probe of orderdisorder laser-induced phase transitions.

HEDS absorption experiments are possible on current x-ray light sources

- Need a short pulse laser to warm sample
- Need a fast detector for < 50 ps time resolution
- Set-up for structural changes in solid
 - ALS, APS, ESRF

- Measurement of the X-ray Absorption Near Edge Structure (XANES)
- Sensitive probe of unoccupied electronic states
- Probe of phase transitions

In the next 5 years there will be some new capabilities for WDM research

- Petawatt laser facility development will provide more places for SPL studies
 - · Primary interaction is with surface
 - Can not interact directly above the critical density $n_c \sim 10^{29}/\lambda(\text{Å})^2 \, \text{cm}^{-3}$
 - Protons beams produced by 100 fs SPLs have pulse duration > 5 ps
 - Effort will be to develop quasi-monoenergetic short pulses for WDM production
- Short pulse 3rd generation light sources will allow studies of weakly perturbed WDM on sub-ps times scales
 - Slicing source at ALS at LBNL (now)
 - Can not perturb matter due to low number of photons per bunch
 - Basically for average brightness experiments
- First 4th generation VUV-FEL is starting up at DESY
 - 40 fs, 10¹³ photons, initially at 40 eV and eventually at 200 eV energies

NEW WORK

VUV-FEL experiment schedule includes HEDS addressing the WDM regime

 Participation in proposal process included > 100 participants from Europe and North America

Q	
(
S	_
	+
Ф	+
O	_
	2
0	

Placma

io-related

Experiment	Brief Description
Warm Dense Matter Creation	Using the FEL to uniformly warm solid density samples
EOS Measurements	Use an optical laser to heat a sample and the FEL to provide a diagnostic of the bulk
Near Edge Absorption	Use an optical laser to heat a solid and the FEL to probe the structural changes
Femtosecond Ablation	Probe the nature of the ablation process on the sub-ps time scale
Trapped, High Γ Plasmas	Use EBIT/laser-cooled trap and probe highly-charged strongly-coupled Coulomb systems
Diagnostic Development	Develop the FEL for Thomson scattering, interferometry, and radiographic imaging
FEL /Gas-Jet Interaction	Create exotic, long-lived highly perturbed electron distribution functions in dense plasmas
FEL / Solid Interactions	Use the FEL directly to create extreme states of matter at high T and $\boldsymbol{\rho}$
Plasma-Spectroscopic Studies	Use the FEL as a pump to move bound state populations and study radiation redistribution
Coulomb Explosion	Study Coulomb Explosion process with emphasis on biological imaging problems
Optics Damage	Study structural changes & disintegration processes of solids under FEL irradiation

Time-Resolved Microscopy used to study ablation of VUV-FEL irradiated samples

 By varying the time delay between the VUV-FEL and the Probe a time history is generated.

Surface ablation data shows distinct mechanism from visible laser-matter ablation

 Time dependent data shows broadly similar ablation pattern as a function of time

 New aspect shown in lateral spread of the ablation

These are still preliminary results

Surface damage studies are critical to applications of the VUV-FEL

 VUV reflection can be rotated and set in front of the VUV transmission, allowing calibration of both devices

Off line analysis is performed to investigate damage mechanisms

- Nomarski-type spectroscopy
- Atomic force microscope
- Electron scanning microscope
- Micro-Raman Spectroscopy
- Micro-x-ray diffractometry

Structural modification and Crater formation

Creating WDM can be difficult: VUV-FEL can access this regime

- Isochoric heating
 - Uniformly heat 500 Å Al foil using the 200 fs FEL tuned to 60 Å

•
$$\frac{E}{V} = \frac{3}{2} n_e T_e + \sum_i n_i I_P^i \Rightarrow (10^{12} \text{ x 200 eV}) / \text{Volume} = 3/2 (1.7 \times 10^{23}) \text{ x 1eV}$$

- Volume = Area x 500 Å \Rightarrow Area = 140 μ m spot
- For a 10 eV plasma a 50 μm spot is needed
- Isentropic expansion
 - A optical FDI probe measures the isentropic expansion

Simulations indicate that the Al sample stays uniform for ~ 1 ps

- For 50 μm spot the sample T_e reaches ~ 10 eV
 - T_i reaches only 1/2 of T_e and equilibrates in > 500 fs
- Sample uniformity is excellent for up to 1 ps
 - Sample tamping, e.g., 100 Å CH, would mitigate gradients in Al

• Sample stays in the WDM regime and thus the simulations must be tested

Plan to build experimental VUV-FEL capability is a broad based effort

FUTURE

On the horizon several new facilities will become available

- SCSS@RIKEN VUV FEL similar to DESY VUV-FEL (soon)
- Petawatt IR laser capabilities, several with high energy will be developed - kJ energy in ps pulses - (> 2008)
- LCLS@SSRL the 1st x-ray FEL with 100 fs pulses of 10¹² photons of 10 keV at 120 Hz mJ energy (2009)
- NIF@LLNL with ~2 MJ of energy in ns pulses (2009/2010)
- Spring8 XFEL@RIKEN with 500 fs pulses of 10¹² photons of < 22 keV at 60 Hz (~ 2010)
- SIS100@GSI upgrade to an intense heavy ion beam capability (> 2010)
- XFEL@DESY with specifications similar to LCLS (> 2012)

LCLS project includes 5 scientific thrusts

Thrust areas: Team Leaders: LCLS Contact: 1) Coherent scattering at G.B. Stephenson S. Brennan the nanoscale K. Ludwig 2) Pump/probe diffraction K. Gaffney A. Lindenberg D. Reis dynamics J. Larsson 3) (HED) Science R. Lee J. B. Hastings P. Heimann J. Arthur 4) Nano-particle/single J. Hajdu molecule (non-periodic) J. Miao H. Chapman imaging 5) Atomic, molecular, I. DiMauro J. B. Hastings and optical science N. Berrah

Proposed LCLS HEDS experimental station covers broad swath of the regime

Experiment	Description	PARTICIPANTS	
Warm Dense Matter Creation	Using the XFEL to uniformly warm solid density samples	HK. Chung, S. Glenzer, G. Gregori, S. Moon, O. Landen. K. Widmann, P. Young, M. Murillo, J. Benage, A. Lindenberg, A. Correa, R. Falcone, W. Nellis, W. Rozmus, A. Ng, T, Ao, J. Wark, J. Sheppard, R. Redmer, D. Schneider, F. Rosmej	
Equation of State	Heat / probe a solid with an XFEL to provide material properties	K. Widmann, K. Budil, G. Collins, S. Glenzer, G. Gregori, M. Koenig, A. Bennuzi, A. Nelson, O. Landen, W. Nellis, A. Ng, P. Young, J. Benage, M. Taccetti, S. Rose, D. Schneider	
Absorption Spectroscopy	Heat a solid with an optical laser or XFEL and use XFEL to probe	P. Heimann, S. Johnson, R. Lee, S. Tzortzakis, S.Bastiani-Ceccoti, C. Chenais, P. Audebert, F. Rosmej, R. Falcone, R. Schuch, A. Lindenberg, D. Chambers, J. Wark, S. Rose	
High Pressure Phenomena	Create high pressure matter with a high- energy laser and probe with the XFEL	G. Collins, H. Lorenzana, J. Belak, P. Celliers, CS. Yoo, K. Budil, M. Koenig, A. Bennuzi, S. Clark, P. Heimann, R. Jeanloz, P. Alivisatos, R. Falcone, W. Nellis, A. Ng, T. Ao	
Surface Studies	Probe ablation/damage process to study structural changes and disintegration	A. Nelson, J. Kuba, A. Andrejczuk, J. B. Pelka, J. Krzywinski, R. Sobierajski, K. Sokolowski-Tinten, L. Juha, M. Bittner, J. Krasna, T. E. Glover	
XFEL / Gas Interaction	Create exotic, long-lived highly perturbed electron distribution functions in dense plasmas	R. London, S. Hau-Riege, P. Young, H. K. Chung, W. Rozmus, R. Fedosejev, H. Baldis, V. N. Shlyaptsev, T. Ditmire, H. Fiedorowicz, M. Fajardo, A. Bartnik, F. Dorchies, JC. Gauthier, P. Audebert, V. Bychenkov, D. van der Spoel, C. Caleman, T. Möller, T. Tschentscher, H. Merdji	
XFEL / Solid Interaction	Use XFEL directly to create extreme states of matter at high temperature and density	S. Glenzer, K. Budil, H.K. Chung, J, Dunn, S. Hau-Riege, R. London, K. Sokolowski-Tinten, J. Krzywinski, H. Fiedorowicz, A. Bartnik, V. Letal, K. Rohlena, K. Eidmann, D. Chambers, N. Woolsey, A. Andrejczuk, F. Dorchies, J. Gauthier, M. Fajardo, J. Dias, N. Lopes, G. Figueira, M. Bergh, T. Tschentscher	
Plasma Spectroscopy	Use XFEL as a pump/probe for excited bound state populations	R. W. Lee, M. Foord, H.K. Chung, D. Riley, F. Y. Khattak, E. Förster, F. Dorchies, JC. Gauthier, S. Tzortzakis, S.Bastiani-Ceccoti, C. Chenais-Popovics, P. Audebert, S. Rose, J. Wark, N. Woolsey, R. Schuch, K. Eidmann, F. Rosmej, S. Ferri	
Diagnostic Development	Develop Thomson scattering, SAXS, interferometry, and radiographic imaging	S. Glenzer, G. Gregori, R. Bionta, H. Baldis, P. Heimann, H. Padmore, U. Bergmann, H. Merdji, P. Zeitoun, J. Seely, E. Förster	

HEDS proposed for XFELs will cover a range of WDM experiments

Creating Warm Dense Matter

- Generate ~ 10 eV solid density matter
- Measure the equation of state

Probing dense matter with Thomson Scattering

- Perform scattering from solid density plasmas
- Measure n_e , T_e , <Z>, f(v)

Probing High Pressure phenomena

- Use high energy laser to create steady high pressures
- Produce shocks and shockless high pressure systems
- Study high pressure matter on time scales < 1 ps
- Diagnostics: Diffraction, SAXS, Diffuse scattering, and Thomson scattering

WDM created by isochoric heating will isentropically expand sampling phase space

 Concept is straightforward

- XFEL can heat matter rapidly and uniformly to create:
 - Isochores (constant ρ)
 - Isentropes (constant entropy)
- Using underdense foams allows more complete sampling
 - Isochores (constant ρ)
 - Isentropes (constant entropy)

High pressure studies: material strength, spall and phase transitions

 LCLS with HEDS end station: sufficient signal to noise for measurements during the high pressure phase

Challenge is to match experimental and theoretical capabilities for HEDS studies

Current StatusSimulation Classical scattering

• MD simulation of FCC Cu taking 400,000 CPU hours

shows in situ stacking fault information

Unique capabilities

Future with LCLS

- Imaging capability
 - Point projection imaging
 - Phase contrast
 - High resolution (sub- μ m)
 - Direct determination of density contrast
- Diffraction & scattering
 - Detection of high pressure phase transitions
 - Lattice structure, including dislocation & defects
 - · Liquid structure
 - · Electronic structure
 - Ionization
 - $\cdot T_{e}, f(v)$

These complement the standard instruments, e.g., VISAR and other optical diagnostics

UPDATE LCLS HEDS EFFORT

HEDS end station proposal endorsed by the LCLS Science Advisory Committee

- Serves the need to develop a community in HED science in the US
 - Will be only dedicated user facility in the US
 - Will be operated by SSRL as a light source

 Proposal is broad-based with many facets of HDM/WDM research possible at the end station

Current efforts are to solicit support at NNSA

LCLS HEDS end station: high-energy and intense short-pulse lasers to access space

Components for HED experiments

- High Energy Laser
 - ≤ 8 kJ in ≤ 120 ns

- Intense Short Pulse Laser
 - $\sim 10 \text{ J in } 30 \text{ fs}$

- Experimental End Station
- · TOTAL COST

\$25 M

13.0

1.5

4.5

Laser Hall can be 'far' from the hutch

Aerial view of SLAC site

- Transport is efficient over long distances
- Lasers can be transported to Far Experimental Hall

Steps toward an HEDS end station and a Center for HEDS

- Presented the case to LLNL management
- Presented the case to the LCLS SAC
- Presented the case to the SLAC Proposal Review Panel
- Presented the case to DOE/NNSA management
- Presented the case to the UCOP Forum
- Presented the case at the UCOP
- Presented the case at LANL

• . . .

Timeline for development of the HEDS endstation and Center

Ongoing:

- Experiments on compression, heating to melt, and solidliquid transitions:
 - ALS (2 ps streak camera)
 - SPPS (80 fs x-ray diffraction work)

New :

- VUV-FEL initial experiments
- Slicing Source initial experiments

Future:

LCLS initial experiments

