The Idealized Slab Plasma approach for the study of WDM

Andrew Ng

Lawrence Livermore National Laboratory

- T. Ao, E. Lee, H.. Tam (University of British Columbia)
- K. Widmann, Y. Ping, D. Price, M. Foord, A. Ellis, P. Springer (LLNL)

Outline

- What is the Idealized Slab Plasma approach?
- Isochoric Laser Heating as an ISP platform
 - Electrical conductivities
 - Solid-plasma transition

Shock Compression another ISP Platform
Phys. Rev. E <u>59</u>, 1024 (1999)
Laser & Particle Beams <u>23</u>, 527 (2005)

ISP approach is a means to achieve single-state measurements

- An ISP is a planar plasma that can be considered as a single uniform state in which any residual non-uniformities impose negligible impact on the measurement of its uniform properties
- The state is characterized by direct measurements

Phys. Rev. E <u>58</u>, R1248 (1998)

The ISP is first illustrated in simulations of isochoric laser heating of a solid

- Heating in the fs time scale mitigates hydro expansion to yield isochoric condition
- Matching sample thickness to range of heating source or conduction scale length yields isothermal condition

20nm Al heated with a 100fs, 400nm laser pulse

Approach scalable with X-rays, electrons, protons or ions

An ISP platform based on Isochoric Laser Heating has been realized

- Isothermal heating produced by laser skin-depth deposition and ballistic electron transport
- Isochoric condition maintained by material strength & inertia

WDM state characterized by ρ_0 and $\Delta \varepsilon$ - $\Delta \varepsilon$ determined directly from {R, T} of pump laser WDM optical properties measured with probe R*, T*

Measurements of S-pol {R*, T*} reveal interesting temporal behavior

- Three distinct stages are observed
 - An initial transient
 - Quasi steady state
 - Hydrodynamic expansion

S-pol probe

 $\Delta \varepsilon = (3.5\pm1.0) \times 10^6 \text{ J/kg}$

Quasi-steady-state behavior unexpected

- Hydrodynamic simulations suggest disassembly of the foil in ~1ps after heating when the lattice reaches melting temperature
 - Expansion gives rise to a plasma gradient on the surface of the foil; the gradient scale length will continue to increase with time
 - To maintain constant probe R* and T*, it would require dielectric properties of the non-uniform system to evolve in a manner that precisely mitigates gradient effects at all times:
 This is improbable

Condensed matter effects absent in hydro code

Quasi-steady-state behavior has an important consequence

- It suggests the absence of significant hydrodynamic expansion, preserving the uniform, slab structure of the heated foil at its initial solid density (the essence of isochoric heating).
- It yields an uniform state that is characterized by the direct observables of mass density ρ_o and excitation energy density $\Delta\varepsilon$

This ensures the realization of the ISP approach

It affirms our ability to obtain single-state measurements of AC conductivity

- We use probe {R*,T*} at the end of the initial transient to solve Helmholtz equs. for EM wave propagation through a uniform dielectric slab
- This yields $\sigma_{\omega}(\rho_{o}, \Delta \varepsilon)$ to provide a direct test of theory

We can learn more if we assume nearly free electron behavior

- Nearly free electron behavior is expected
 - Absence of interband transition at 800 nm
 - Conductivity effected by electrons near Fermi surface

Position
$$\sigma(\omega) = \sigma_r + i\sigma_i = \frac{\sigma_o}{1 + \omega^2 \tau^2} (1 + i\omega \tau),$$

$$\tau = \frac{\sigma_i}{\sigma_r} \frac{1}{\omega}, \qquad \sigma_o = \sigma_r (1 + \omega^2 \tau^2), \qquad n_e = \frac{m_e \sigma_o}{e^2 \tau}$$

This extends our single-state data to include τ , σ_o and $\langle Z \rangle$

At normal conditions:

$$\sigma_0 = 4.1 \times 10^{17} \, \text{s}^{-1}$$

$$n_e = 3.8 \times 10^{22} \,\mathrm{cm}^{-3}$$

PRL <u>92</u>, 125002 (2004)

Drude-like optical properties at 800nm has been confirmed

The next critical question is the phase of the quasi-steady state

 Calculations of transport properties require phase information, solid versus liquid, to determine the structure factor of the state

 The identity of the quasi-steady state is also key to understanding non-equilibrium phase transitions induced by ultrafast excitation

To monitor hydro expansion, we use the more sensitive P-pol R/T & S/P-pol $\Delta \phi$

Quasi-steady state is confirmed in six different measurements

To quantify quasi-steady-state duration, we use an extensive set of S-pol FDI data

Quasi-steady-state duration shows a clear dependence on excitation energy density

• The range of τ_{QSS} from 2-20ps is substantial

Dynamical behavior of the heated foil is governed by various processes

- Laser heating of s/p electrons and photo excitation of d-electrons
- Electron-hole recombination
- Electron-electron thermalization
- Escape of heated electrons forming a surface sheath; sheath thickness is limited by space charge field
- Lattice heating effected by electron-phonon coupling
- Melting of the lattice
 - Ultrafast, non-thermal melting?
 - Thermal melting to meta-stable liquid?
 - Superheating prior to melt transition?
- Disassembly of the liquid metal into a plasma

To describe lattice heating, we use a modified Two-Temperature Model

TTM:
$$C_e(T_e) \frac{dT_e(t)}{dt} = -g \left[T_e(t) - \varepsilon_l(t) \frac{\rho_{Au}}{C_l} \right] + S(t)$$

$$\rho_{Au} \frac{d(\varepsilon_l(t))}{dt} = g \left[T_e(t) - \varepsilon_l(t) \frac{\rho_{Au}}{C_l} \right] , \qquad \varepsilon_l(t) = \frac{C_l T_l(t)}{\rho_{Au}}$$

Electron-phonon coupling:
$$g = (2.2\pm0.3) \times 10^{16} \text{ W/m}^3 \cdot \text{K}^*$$

Heat capacities:

$$C_e(T_e) = \frac{\partial U_e(T_e)}{\partial T_e}, \qquad C_l = 2.5 \times 10^6 \text{ J/m}^3 \cdot \text{K}^{\dagger}$$

Laser energy deposition:

$$S(t) = \frac{\Delta \varepsilon \rho_{Au}}{\tau_P \sqrt{\pi}} \exp\left(-\frac{t^2}{\tau_P^2}\right)$$

^{*}Hohlfeld *et al.* Chem. Phys. 251, 237 (2000)

[†]Maxmillian's Chemical and Physical Data, Maxmillian Press, London, 1992

We postulate that disassembly is a rate-independent critical phenomenon

• Quasi-steady-state duration $\Delta \tau$ is determined by a critical value ϵ_D that is independent of heating rate (or $\Delta \epsilon$)

The model shows good agreement with observation

 This yields the first measurement of the critical lattice energy ε_D=(3.3±0.3)x10⁵ J/kg needed for solid-plasma transition under ultarfast laser excitation

Phys. Rev. Lett. <u>96</u>, 055001(2006)

Dielectric function appears to indicate ultrafast, non-thermal melting

- Following the non-thermal melting of Al interpretation by Guo *et. al.* [PRL, 2000], ε(t) suggests a solid-liquid transition within ~200fs
- The quasi-steady state would then be a meta-stable liquid

Caveat: comparison with ε for an equilibrium liquid might be inappropriate

UED shows thermal melting followed by a meta-stable liquid phase

Siwick et al., Science (2002)

- Disordering to a liquid occurs in ~ 3.5 ps
- Liquid structure appears unchanged to ~50 ps

Caution: Observations are for Al at lower energy densities

Recently, our FDI data led to another conclusion in MD simulations

- FDI measurement presented in LANL, September 2004 and data provided to Mazevet
- Using an e-i coupling term in the ion equation of motion [Ivanov et al., PRB 2003] and assuming melting occurs when <r²>=0.5Ų (<r²>=0.58Ų for fcc lattice, Shapiro, PRB 1970), MD simulations yielded quasi-steady state durations that appear to be consistent with our FDI data

Mazevet *et al.*, PRL <u>85</u>, 085002 (2005)

Suggested that the quasi-steady state is a superheated solid

Conclusions

- The ISP approach has been realized in isochoric laser heating, enabling the measurement of single-state properties
 - $\sigma(\omega)$, σ_0 , τ_{ei} , n_e
 - Critical energy density for solid-plasma transition
- The structural phase of the intermediate, quasisteady state in the solid-plasma transition induced by ultrafast laser excitation remains an open question
 - This is to be resolved in UED measurements
- It is important to understand in isochoric heating the processes pertinent to the different energy sources
 - The microscopic states of WDM with the same energy density may be quite different

1996 International Seminar on HED Matter, Vancouver, Canada

- Strongly coupled plasma

2000 International Workshop on WDM, Vancouver, Canada

- Plasma, condensed matter, shock, geophysics, chemistry

2002 International Conference on WDM, Hamburg, Germany

- Plasma, condensed matter, XFEL

2005 International Workshop on WDM, Vancouver, Canada

- Transport and EOS properties
- Experiment and *ab initio* theory

2007 (M. Koenig, LULI)

Contact: Andrew Ng < ng16@llnl.gov>

