

Characterizing the RHEPP-1 oxygen beam and its effects on sold targets

T. J. Renk, C. L. Olson Sandia National Laboratories

Workshop on Accelerator-Driven Warm-Dense-Matter Physics

Four Points Sheraton Hotel Pleasanton, CA February 22-24, 2006

Outline of Presentation

- RHEPP-1 and MAP diode background
- Prior beam optic studies on MAP by Dave Johnson
- Materials effect: single-pulse Oxygen on Al 2024-T6
- Beam optic study: 3-hole Ta aperture plate and Al target
- Ta 'HIF' Witness Plate exposure
- Summary

The RHEPP-1 Facility: 5 kJ Marx feeding Extractor single-stage ion diode with active MAP source

Left: Marx tank with pulse-forming line

Right: 4-Stage LIVA and treatment chamber

The MAP (Magnetically Confined Anode Plasma) Ion Source is used for surface modification experiments on RHEPP-1

00-850 kV 350 A/cm² leams from H, He, I₂, O₂, Ne, Ar, Xe, Kr, H₄ Overall treatment rea ~ 100 cm² Diode vacuum 10⁻⁵ Torr

Nitrogen injection into MAP produces 3-component beam of mostly N++, N+

- Beam predominantly N++ and N+ after small proton pulse at front
- Peak voltage = 850 kV
 Peak current density (total) ~145
 A/cm²
- Total fluence = 7.9 J/cm² will ablate almost all materials
- Total pulse width at target ~ 200 ns
- Ion range (TRIM):
 N+ 0.9 μm, N++ 1.2 μm
- Oxygen, Neon beams similar

Side schematic view of MAP Diode

A-K gap = ~ 1.3 cm A-K voltage ~ 700 kV

Evolution of B-lines in MAP

Figure 5. Fast coil current for 30 kV source voltage.

A-K gap = ~ 1 cm

Bfield in gap ~ 3.5 T

C-L Enhancement (protons) ~ 20

A Beam Propagation Model has been developed

Figure 12. Schematic of the beam trajectory model used to account for the transported beam.

z	r _i	R _{ca}	fwhm _r	$fwhm_\delta$	fwhm _b	I(r<5cm)
cm	cm	cm	cm	cm	cm	%
9	8.03	0.28	1.76	1.24	na	0.00
18	6.28	0.45	4.94	1.26	na	27.4
25	4.92	0.62	7.40	3.50	6.6	49.5
35	2.97	0.69	10.9	4.90	6.2	58.9
45	1.03	0.87	14.5	6.29	8.0	51.8
50	0.06	1.27	16.4	6.99	8.8	46.3
63	-2.46	1.62	20.8	8.80	11.8	32.0

The MAP proton beam emits from a point focus in the A-K gap

Single Oxygen pulse makes 4 μ m-deep crater in Al 2024-T6

Photo - 3 Al melt spots

- Surface Temp (K)
- Al melt depth (nm)

Center spot Profilometer scan

- Material: Al 2024-T6
- Three 4mm countersunk holes 1.3 cm apart in Ta aperture plate aperture-target dist = 3.5 mm
- Profilometer: 4 μ m-deep ablation pit
- SIM: I-d Heat Flow Code, energy input from TRIM, then bulk properties. Does NOT model ablation
- Beam pulse 0-250 ns, 6 J/cm²
 - H very small, 20K rise by 90ns
 - Oxy ablation temp (2793K) by 140 ns
- Surface below 2793K by 660ns, Al melt depth reaches 10 μ m by 1.5 μ sec. Peak SIM Al temp = 9500K
- Ta: 6J/cm² simulation exceeds 12,000K (low Ta thermal conductivity)
- Al melt duration well beyond 10 μsec

Oxygen Beam Focusing study

Aperture-target dist = 0.7 cm

Aperture-target dist = 1.25 cm

Aperture-target dist = 2.7 cm

- Aperture Plate: 3 holes in Ta, 3/4 inch apart, countersunk, size 2.9 mm. Target: EVERBRITE (AI)
- (SinglePulse) Aperture-target dist =
 - 0.7 cm (TOP)
 - 1.25 cm (MIDDLE)
 - 2.7 cm (BOTTOM)
- SIM melt threshold 0.55 J/cm²
- Peak beam power ~ 6 J/cm²
- Observations: source has discrete beam's ections', each has different μ -divergence
- Damage to plate narrower than penumbra worst-case

Setup for Ray Tracing Study

- Draw straight-lines from inner anode edge, to each side of aperture hole. Repeat for outer anode edge.
- Repeat for 3 aperture-target distances

Ray-tracing results

- Red chords inner edge. Blue chorus outer euge
- Red spot on Everbrite actual damage. Green is damage-free
 - Gray objects are Faraday cup locations
- 0.7 cm: No 'Hole', beam fills in, spot size matches
- 1.25 cm: Damage less than penumbra
- 2.7 cm: Spot size less than half worst-case. Could be we are below damage threshold
- But 'persistence' of image on HIG plate suggest 2 degree μ divergence

Show-and-Tell Tantalum Witness Plate

Ta Aperture Plate

- Ta Aperture plate at z = 45cm
- Ta Target plate offset = 0.5 cm.
 Target plate diameter = 13.5 cm
- 20 pulses oxygen beam
- Center holes ablated, other holes melted to ~ 3 cm radius
- Center of each damage pattern is undamaged (see above)

Ta Target Plate Diam = 13.5 cm

Summary

- RHEPP-1 with active ion source can generate intense ion beams of total currents ~ 5 kA, peak currents ~ 250 A/cm², with variable dose over a ~150 cm² target area. Beam pulsewidth ~ 150 - 400 ns
- Present oxygen beam can ablate any metal, over a 50-500 ns timescale. Peak effective temperatures approach 10,000K (~1 eV).
- Beam optics studies indicate possible paths for improvement. One idea is to 'fill' the anode annular gap with a screen.
- RHEPP/MAP can be considered either for 1) preliminary effects experiments, or 2) as a test-bed for diagnostic development.
 Preference is for real-time diagnostics (not time-integrated)

