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Main Goals of This Work

The obvious three:
• How do particles stop in WDM?
• How can we create WDM with stopping particles?
• How can we diagnose WDM with projectiles?

More specifically:
 What is different in WDM, relative to gases, cold solids, and ideal plasmas?

• partial degeneracy (Pauli blocking)
• strong coupling within target
• atomic physics within target (continuum lowering, incipient Rydberg states)
• radiation
• strong projectile-target interaction (resonant capture)
• Etc.

 What “analytic” models can we construct for experimental design purposes?

 How can accuracy and self-consistency be quantified with simulation?
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We Combine Analytic and Simulation Capabilities

experiment

theory simulation

Theory is highly developed,
but has weaknesses in

treating everything
(nonlinear response, atomic

physics, collective
excitation, etc.) self-

consistently.

Simulation is much less
developed, but has many

strengths.

calibrate theory

model experiments
model experiments

For WDM, what type of simulation is needed?
• fully dynamic electron & ion responses (nonequilibrium excitation)
• strong projectile-target scattering (accurate trajectories)
• strong coupling in target (discrete particle information)
• partial degeneracy of target (Pauli over wide range of temperature)
• nonlinear screening of projectile by target (electron trapping, bound states)

Courtesy: D. O. Gericke



Our Current Analytic Model
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We decompose the dielectric response function as:

The free-particle response is given by the finite-temperature Lindhard function:

Various forms for the dynamic local field correction are known, but we neglect them for this talk.

G(k,ω) = 0

 
χ (0 )(k,ω) = 2 f (q)− f (k + q)

ω − εk+q −εq( ) + iδq
∑

plasmon excitation

free-particle density fluctuations, including
Pauli blocking and diffraction

strong coupling

effective charge



Effective Charge: Drifting, Modified Thomas-Fermi Model
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Assumptions:

• projectile is “slow”

• charge renormalization is the dominant nonlinear interaction

• Thomas-Fermi is a reasonable starting point

• quantum (gradient) correction included via pseudopotential
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Consider a drifting Fermi-Dirac:

This model has:

• arbitrary target density and temperature

• finite density at nucleus

• exact linear result

• perfect screening

• velocity-dependent charge

• finite-size bound cloud (effective charge) 
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nb (r) :
p +mv( )2 2m + u(r) < 0

nf (r) :
p +mv( )2 2m + u(r) > 0

Separate bound and free contributions:

The effective projectile is the nucleus and its bound electrons.

Z = d3r n(r)− n(∞)[ ]∫

Pseudopotential chosen to be of the form:

Parameter a constrained by the condition:



Examples of Effective Charge Calculations

Consider a Na ion stopping in Al:

Density profiles at zero velocity:

Charge state versus velocity:
(T=10eV)

~4x in stopping

N.B.: Free electron
screening is weak.
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Analytic Model Results for Na Projectile in Al at T=10eV

dE
dx

MeV
µm







v
vth

dE
dx

MeV
µm







dE
dx

MeV
µm







dE
dx

MeV
µm







x µm[ ] x µm[ ]

x µm[ ]

E =1MeV

E = 0.4MeV
E = 0.25MeV

with effective charge

Z = 6 (fixed)

<Z>(v)

Note change
of scale.

Note change
of scale.



We Use Molecular Dynamics Methods

Molecular dynamics means:
• Solve the equations of motion exactly

Molecular dynamics does NOT:
• use a mesh - detailed trajectories are followed
• use the Born-Oppenheimer approximation – electrons are dynamic
• assume equilibrium distributions – applicable to nonequilibrium

This comes with a price:
• few particles (N~thousands) – use periodic boundary conditions
• forces tend to be classical-like – use effective quantal interactions
• statistical “noise” can be large – use several ensembles



We Obtain Quantal Interactions from Partition Function

Consider the partition function of a quantum system:
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Some exact limits:

• classical, strongly-coupled plasma
• ideal Fermi gas pair correlation function for zero separation: g0(0)=0.5

diffractive scattering spin-averaged Pauli exclusion



Our current MD capability is:
• electrons and ions (quasi-bound states, knock-ons, energy split)
• projectile 
• several thousand particles

Newton’s equations for N particles are solved via velocity-Verlet:

The forces include pure Coulomb, diffractive, and Pauli terms:

Shape of main cell minimized via spherically-averaged Ewald:

• Nmax=10
• g(α,r) tabulated across 500 bins
• energies and forces tabulated separately
• 2nd-order Newton-Gregory interpolation
• other forces/energies computed directly
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• establish initial equilibrium via equilibration phase
  (~20,000 steps) “data” accumulated with no
  thermostat
• inject projectile
• typical time step ~0.02/ωpe
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Some Details



Our MD Physics Model Agrees Well with Experiment

Deuterium Hugoniot

comparison with other models
and experimental data corresponding temperatures



Various Issues Arise for Computing Stopping Power

• Need enormous system, not periodic boundary conditions (PBCs)
 plasma is not periodic on few-particle length scale

 beam is not a simple-cubic lattice
 main cell cannot be big enough to actually stop the projectile

• Need to resolve wake potential*
 PBCs yield wake-wake, wakes-projectile interaction

 contributions to stopping arise from very long wavelengths (hydro-scale)

• Need to obtain steady-state response
 inserting a projectile for each v, Z  unphysically “shocks” the plasma

• Need accurate plasma physics
 target is initially partially degenerate and strongly coupled

• Need accurate atomic physics
 charge state can change by many (micro-scale)

• Need to resolve various time scales
 transients, collective modes, electrons/ions, bound electrons

v



Wake Size/Shape and Periodic Boundary Conditions

Simulation example:

• in projectile reference frame

• N=1,501 (750e, 750p, 1proj)

• Deutsch diffractive, no Pauli

• Standard Ewald

• M/m = 10

• ne,p=1024 cm-3

• Te,p=100 eV

• Zproj=+30

• Eproj=1 MeV

electrons
protons

electrons
protons



PBCs Dominate for Fast Projectiles

Projectile at rest (“DH screening”)

Moderate velocity (1 MeV/u)

High Velocity (10 MeV/u)



Upstream Re-Thermalization Helps

Simulation example:

• in projectile reference frame

• N=1,501 (750e, 750p, 1proj)

• Deutsch diffractive, no Pauli

• Standard Ewald

• M/m = 10

• ne,p=1024 cm-3

• Te,p=100 eV

• Zproj=+30

• Eproj=1 MeV

• plasma velocity randomized ahead 

  of projectile



Note that we are looking for a needle in a haystack!

Molecular dynamics gives the force directly on the projectile.

Very slow (E=0). Intermediate velocity (E=1MeV/u). Fast (E=10MeV/u).

Stopping Occurs From Average Force On Projectile



fx, fy, fzfx, fy, fz

Initial beam diameter

Final beam shape

Incident beam does not:
• travel along a line
• deposit energy “on average”

This rapid microfield will
affect spectral line

emission - diagnostic!

MD Naturally Has All Force Components



fast slow stopped
Green spheres

represent “bound”
electrons.

Initial Studies of Effective Charge Underway



• We have an analytical model for modeling stopping in WDM, and we would

    like to determine its validity; some theoretical issues can be checked by simulation.

• We have developed a computational tool for studying stopping power

• physics issues addressed

• computational issues addressed

• Now, use this tool for specific applications

• actual stopping-power problems

• using beams to create plasma experiments (e.g., EOS)

• calibrate analytic methods in overlap regimes

• Continue to advance physics model

• spin-resolved, density-dependent Pauli

• low-temperature diffraction

• wave-packet molecular dynamics

Summary



Welcome to the

Back-Up Slides…



• Time-Dependent Variational Principle

• Wave function      is parameterized by functions z(t), whose dynamics are of
the form

• All physical observables are obtained quantum mechanically:

• We choose to characterize the wave function as an antisymmetrized
product of individual wave packets, e.g. of gaussian or exponential shape
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We Are Exploring a Systematic Approach: WPMD

This is the time-
dependent

Schrödinger equation!
(in principle)

ΨΨ≡ OO ˆ



• For example, a Gaussian* WP with parameters

–         correspond to classical coordinates and momentum,
while             provide a quantum width with its canonical
momentum

• With these parameters, equations of motion are canonical
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Example: Wavefunction Evolution for Single Electron

*Other shapes are possible:
M. S. Murillo and E. Timmermans, Contrib. Plasma Physics 43, 333 (2003).

Computational
effort ~33%
increased.



Results: Dynamics of Bound Hydrogen Atom

Simulation example:
• hydrogen
• bound state
• Gaussian wavefunction
• 4th-order RK with adaptive step
• further refinements are needed
  before full implementation

Question: How well can such simple
models describe mid-Z projectile atomic

physics?
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o Energies compare much
more favorably than
Thomas-Fermi and
Thomas-Fermi-Dirac

o Exponential WP much
better than Gaussian,
indicating the importance
of the cusp at the origin

o These results employ fully
antisymmetric total
wavefunction – important
physics for plasma
degeneracy

Results: Ground State Energies - Wavepackets Quite Accurate



Results: We Have Studied Ground-State Densities

Excellent ground states are
found for lower-Z elements,

with exponential shapes
somewhat better.
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