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Main Goals of This Work

\ _Ec;ileelgt?vi dense
The obvious three: bearm [EIEES plasma
» How do particles stop in WDM? . @ o® © e ﬁ;ﬁfﬁd'c’”
* How can we create WDM with stopping particles? | ey o> ©
* How can we diagnose WDM with projectiles? %. :‘ ¢, ~ col\llivslignes_bQ
ions \ AVAV/

ion stopping
energy deposition

collective

electrons )
e modes

More specifically:
v What is different in WDM, relative to gases, cold solids, and ideal plasmas?
» partial degeneracy (Pauli blocking)
» strong coupling within target
 atomic physics within target (continuum lowering, incipient Rydberg states)
e radiation
» strong projectile-target interaction (resonant capture)
* Etc.

v What “analytic’ models can we construct for experimental design purposes?

v How can accuracy and self-consistency be quantified with simulation?
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We Combine Analytic and Simulation Capabillities

0 2 4 6 8 10

calibrate theory o= — qunumges 1025

-==- combined model
02F —— T-matrix with &(v) 0.2

Theory is highly developed,
but has weaknesses in
treafing everything
(nonlinear response, atomic
physics, collective
excitation, etc.) self-
consistently.

CORIX 7P T}

. | Simulation is much less
......... ' S~ 0 developed, but has many
: strengths.

. experiment
model experiments

model experiments

For WDM, what type of simulation is needed?

* fully dynamic electron & ion responses (nonequilibrium excitation)

stfrong projectile-target scattering (accurate trajectories)

strong coupling in target (discrete particle information)

* partial degeneracy of target (Pauli over wide range of temperature)

* nonlinear screening of projectile by target (electron trapping, bound states)
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Our Current Analytic Model

dE > Ldk 1
_° f Z - nb(k)‘ fda) wlm|——| n,(w)
dx ﬂ:v 0 k effective charge —kv g(k,(j))
We decompose the dielectric response function as:
(0)
e(k,w) 1=v(k)x" (kw)[1 - G(k, w)]

\ plasmon excitation

The free-particle response is given by the finite-temperature Lindhard function:

(O)(k (1)) 22 f(q) f(k + q) free-particle density fluctuations, including

(8k+q —£ ) + 16 Pauli blocking and diffraction

Various forms for the dynamic local field correction are known, but we neglect them for this talk.

G(k, (U) = O strong coupling
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Effective Charge: Drifting, Modified Thomas-Fermi Model

Consider a drifting Fermi-Dirac:
n ,T(M)JL 1
' n(r)=2 f o —
+ o r ﬂh) exp[/;’((p+mv) /2m+u(r)—y)]+1
j Pseudopotential chosen to be of the form:

Z 2
u(r) = _—2e = exp(—% (M))
Nri+a e

Parameter a constrained by the condition:

Assumptions:

* projectile is “slow”

* charge renormalization is the dominant nonlinear interaction 3

N o Z = [&r[n(r)-n()]

* Thomas-Fermi is a reasonable starting point

* quantum (gradient) correction included via pseudopotential Separate bound and free contributions:
n,(r): (p+ m\7)2/2m +u(r)<0
n.(r): (13 + m\7)2/2m +u(r)>0

The effective projectile is the nucleus and its bound electrons.

l’d

This model has: P - fbx; ':‘
* arbifrary target density and temperature ,. I ﬁ‘,

* finite density at nucleus % ! f' ' "j:j
* exact linear result _JEJ'r"

* perfect screening
* velocity-dependent charge

* finite-size bound cloud (effective charge)
ﬂ
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Examples of Effective Charge Calculations

Consider a Na ion stopping in Al:

Density profiles at zero velocity:

Z=42(T =10eV)
7 =8.5(T =200eV)

~4x in stopping

Charge state versus velocity:
(T=10eV)

n(r)/n”

praj

10

a

solid — 10 eV

dashed — 200 eV

N.B.: Free electron
screening is weak.

2 SN —~
U~~~ :‘_‘:ﬁ_:}___:%,.__
N -
O ey e
0 0.5 1 1.5 2 2.5
r/a
e
10
8
//
4 /
2
0
0 0.5 1 1.5

viv



Analytic Model Results for Na Projectile in Al at T=10eV
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We Use Molecular Dynamics Methods

Molecular dynamics means:
» Solve the equations of motion exacily

Molecular dynamics does NOT:

» Uuse a mesh - detailed frajectories are followed

» Use the Born-Oppenheimer approximation — electrons are dynamic
« assume equilibrium distributions — applicable to nonequilibrium

This comes with a price:

» few particles (N~thousands) — use periodic boundary conditions

» forces tend to be classical-like — use effective quantal interactions
« stafistical “noise” can be large — use several ensembles




We Obtain Quantal Inferactions from Partition Function

Consider the partition function of a quantum system:

exp(- BF)=Te[p = TrlexpC 67 )|
= [&*h...dn {5, ... o lexpC B ).t
=fa’3r1...d rF(r,....1)
= fd3r1 e od’ry G(Byy iy oo Ty )

—Cfd n...d’r, exp( [)’Eul](l”y))

i<j

CurrenTIy, we use. diffractive scattering spin-averaged Pauli exclusion

2
s (7 gy )= -#(1 —e P Y8, 8, Tln(2)e™ ™k

AN /

thermal deBroglie wavelength

Some exact limits:

« classical, strongly-coupled plasma
* ideal Fermi gas pair correlation function for zero separation: g,(0)=0.5
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Some Details

Our current MD capability is:

* electrons and ions (quasi-bound states, knock-ons, energy split)
* projectile

« several thousand particles

Newton’s equations for N particles are solved via velocity-Verlet:

- - _ | 7 « establish initial equilibrium via equilibration phase
r(t+At)=r()+v()At + —a(t)At (~20,000 steps) “data” accumulated with no

2 thermostat
« inject projectile

_ _ 1. _
v(t+At)=v(t)+ > (a(r+Ar)+a(r)) At - typical time step ~0.02/w,,

The forces include pure Coulomb, diffractive, and Pauli terms:

DR

a<b

jl’ql’ ( (a Iab) ) + g(a I(lb)

ab

Shape of main cell minimized via spherically-averaged Ewald:

=10
max
Jla,r,) = erfc(arl,,) . g(a,r) tabulated across 500 bins
exp(=k* / 4a”)sin(kr,,) - energies and forces tabulated separately
gla.r,)= JE E 3r * 2nd-order Newton-Gregory interpolation

ab

k=0

« other forces/energies computed directly
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Our MD Physics Model Agrees Well with Experiment

Deuterium Hugoniot
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Various Issues Arise for Computing Stopping Power

* Need enormous system, not periodic boundary conditions (PBCs)
v plasma is not periodic on few-particle length scale
v beam is not a simple-cubic lattice
v main cell cannot be big enough to actually stop the projectile

* Need fo resolve wake potential*
v PBCs yield wake-wake, wakes-projectile interaction
v contributions to stopping arise from very long wavelengths (hydro-scale)

* Need to obtain steady-state response
v inserting a projectile for each v, Z unphysically “shocks” the plasma

» Need accurate plasma physics
v target is initially partially degenerate and strongly coupled

* Need accurate atomic physics
v charge state can change by many (micro-scale)

 Need to resolve various tfime scales
v fransients, collective modes, electrons/ions, bound electrons

oooooooooooooooooo




Wake Size/Shape and Periodic Boundary Conditions

electrons

Simulation example:

* in projectile reference frame
* N=1,501 (750e, 750p, 1proj)

» Deutsch diffractive, no Pauli
« Standard Ewald

* M/m =10

* N, =10%cm

T, ,=100 eV

=+30

=1 MeV

'Zm@

* Eproj

’)r‘ ‘ ﬁj
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PBCs Dominate for Fast Projectiles

- Projectile at rest (“DH screening”)

Moderate velocity (1 MeV/u)

High Velocity (10 MeV/u)

AAAAAAAAAAAAAAAA



Upstream Re-Thermalization Helps

Simulation example:

* in projectile reference frame

* N=1,501 (750e, 750p, 1proj)

» Deutsch diffractive, no Pauli

» Standard Ewald

* M/m =10

* N ,=10%cm

* T, ,=100 eV

* L= 130

*E,o=1 MeV

» plasma velocity randomized ahead
of projectile




Stopping Occurs From Average Force On Projectile

Molecular dynamics gives the force directly on the projectile.
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Note that we are looking for a needle in a haystack!
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MD Naturally Has All Force Components

200 N B s
Incident beam does not: 5 f 5 f f | 5
- travel along a line 150
» deposit energy “on average”
100
50
0
-50
Final beam shape -100
-150
This rapid microfield will | |
affect spectral line 200 | | | | | |
emission - diagnostic! 0 5 10 15 20 25 30 35 40
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Initial Studies of Effective Charge Underway
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Summary

* We have an analytical model for modeling stopping in WDM, and we would
like to determine its validity; some theoretical issues can be checked by simulation.

* We have developed a computational tool for studying stopping power
* physics issues addressed
« computational issues addressed

* Now, use this tool for specific applications
 actual stopping-power problems
* Using beams to create plasma experiments (e.g., EOS)
« calibrate analytic methods in overlap regimes

« Continue to advance physics model
* spin-resolved, density-dependent Pauli
 low-temperature diffraction
« wave-packet molecular dynamics

/"\7
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We Are Exploring a Systematic Approach: WPMD

. . . This is the time-
Time-Dependent Variational Principle o b me ime

dependent
£2 Y d . Schrédinger equation!
5 fdt<\P(z(t))‘zh 4/ H‘IP(Z(t))> -0 Pl

Wave function W' is parameterized by functions z(t), whose dynamics are of
the form

dt aZu

All physical observables are obtained quantum mechanically:

O =(¥(0|¥)

We choose to characterize the wave function as an antisymmetrized
product of individual wave packets, e.g. of gaussian or exponential shape

Y=/

];[fp(xial,-(t))]

*Feldmeier & Schnack, Rev. Mod. Phys. (2000)
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Example: Wavefunction Evolution for Single Electron

o Forexample, a Gaussian* WP with parameters r(¢), p(¢),y (¢), p, (¢)

p_( L _ )(x P e pelei )i

2y° 3h

Q(X,t) = ;ex
? (y\/;)s/z

— I, Pcorrespond to classical coordinates and momentum,
while V> P, provide a quantum width with its canonical
momentum

o With these parameters, equations of motion are canonical

£=I/ d_p= ze’ erf ! —iie_%2 r

dt m dt r \/7)/

dy 2p, dp, 3n° _ 2 Ze’ e‘%z Computational
E‘ 3Im dt  2my’ = y? effort ~33%

increased.
*Other shapes are possible:
M. S. Murillo and E. Timmermans, Confrib. Plasma Physics 43, 333 (2003).
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Results: Dynamics of Bound Hydrogen Atom

Simulation example: ‘qa(x, t)‘2

* hydrogen

* bound state

« Gaussian wavefunction

« 4M-order RK with adaptive step

« further refinements are needed
before full implementation

<

Question: How well can such simple
? 100 iy 200 20 models describe mid-Z projectile atomic

time

physicse

)
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Results: Ground State Energies - Wavepackets Quite Accurate
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Energies compare much
more favorably than
Thomas-Fermi and
Thomas-Fermi-Dirac

Exponential WP much
better than Gaussian,
indicating the importance
of the cusp at the origin

These results employ fully
antisymmetric total
wavefunction —important
physics for plasma
degeneracy



Results: We Have Studied Ground-State Densities

25

= TDVP Exponential
= TDVP Gaussian
=~ Hartree-Fock

Excellent ground states are
found for lower-Z elements,
with exponential shapes
somewhat better.

14

= TDVP Exponential = TDVP Exponential
45} = TDVP Gaussian 1 = TDVP Gaussian
- Hartree-Fock 12+ Hartree-Fock

10
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