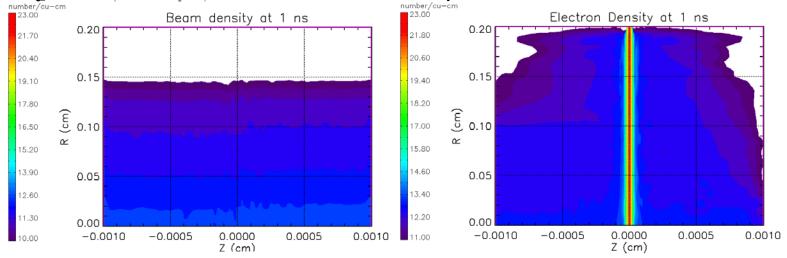
LSP beam-target interaction simulations in WDM regime

D. R. Welch, D. V. Rose Voss Scientific

Adam Sefkow Princeton Plasma Physics Laboratory

February 22-24, 2006

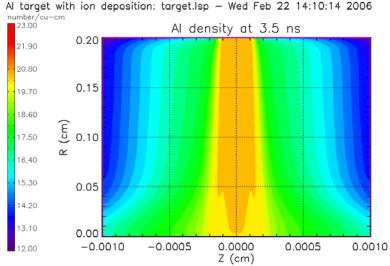

Workshop on Accelerator-Driven Warm-Dense-Matter Physics Pleasanton, CA

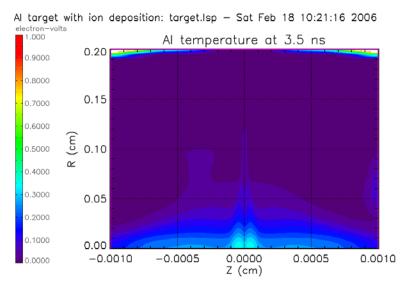
Implicit, hybrid simulation of ion beam-target interaction

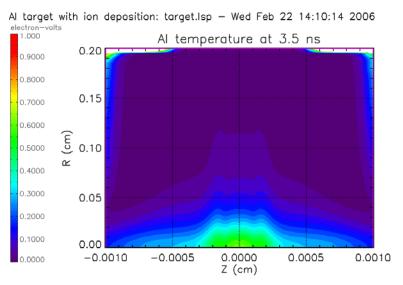
- Electromagnetic LSP simulations includes inertial two fluid model for Al initialized at solid density, room temperature
 - Monte Carlo interactions with LMD resistivity
 - Kinetic beam description with specified dE/dx (ρ)
 - Plasma can also be described as kinetic particles
- EOS is only approximately implemented
 - Bill Sharp is working on more complete implementation
 - Z is specified, plasma collisionality is adjusted to correct momentum and energy equations
 - Ion Lorentz force is wrong
 - No strength of material, surface tension (Al rigid until melting at 0.08 eV)
- Why?
 - Grant asked about beam neutralization...
 - Look at collective interactions, neutralization. Model beam diagnostics beyond foil. Might consider exotic EOS descriptions.

Beam neutralization in plasma and foil

 Electron density required for neutralization is down 10 orders-ofmagnitude from solid – 10 A 3-ns compressed K⁺ beam


Peak 5-A net current at 4ns




kilovolts/cm amperes 0.07000 Electrostatic potential at 4 ns Enclosed net current at 4 ns 0.10 0.10 0.06300 8.900 0.05600 7.800 0.08 0.08 0.04900 6.700 0.04200 5.600 0.06 0.06 (cm) (cm) 0.03500 4.500 0.04 0.02800 3.400 0.02100 2.300 0.02 0.02 0.01400 1.200 0.007000 0.1000 0.00 0.00 -0.0005-0.0010-0.00050.0000 0.0005 0.0010 -0.00100.0000 0.0005 0.0010 0.0000 -1.000 Z (cm) Z (cm)

Solid vs. "foam" Al target

T = 0.4 eV T = 0.7 eV