High-Energy-Density Experiments in Japan

Kazuhiko HORIOKA^a, Tohru KAWAMURA^a, Mitsuo NAKAJIMA^a, Toru SASAKI^a, Kotaro KONDO^a, Yuuri YANO^a, Takato ISHII^a, Masao OGAWA^b, Yoshiyuki OGURI^b, Jun HASEGAWA^b, Shigeo KAWATA^c, Takashi KIKUCHI^c, Ken TAKAYAMA^d

Department of Energy Sciences, Tokyo Institute of Technology^a, Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology^b, Department of Energy and Environmental Sciences, Utsunomiya University^c,

High Energy Accelerator Research Organization^d KEK, Tsuykuba

High Energy Density Experiments in Japan

- Pulse Power based HED Experiments (TIT)
- Beam Plasma Interaction Experiments using Foil Explosion and Shock Heated Plasma Target (TIT) (Oguri, Hasegawa)
- Beam Physics Issues in Final Transport for HED and/or HIF (UU, TIT, KEK) (Kawata, Kikuchi, Takayama)
- Induction Synchrotron for WD Studies (KEK, TIT, UU) (Takayama)
- HED Studies using Intense Laser Irradiation

(UEC, ILE, UU, UT, JAEA, CRIEPI-TIT) (Yoneda)

- TIT: Tokyo Institute of Technology
- KEK: High Energy Accelerator Organization
- UU: Utsunomiya University
- ILE: Institute of Laser Engineering, Osaka University
- UEC: The University of Electro-Communications
- JAEA: Japan Atomic Energy Agency
- UT: University of Tokyo
- CRIEPI Central Research Institute of Electric Power Industry

Outline

- Pulse-power-driven HED Physics
 - Dense plasma made by exploding wire discharges in water
 - High temperature plasma in electromagnetically driven strong shock waves for radiation hydrodynamics
- Accelerator based HED Physics
 - Ion beam driver for HED physics
 - Achievable parameter region by induction synchrotron
- Comparison of them

Materials in Density-temperature Diagram

Achievable Parameter Region of Pulse Power Drivers

Dense Plasma

Warm-dense Matter Studies using Pulse-powered Exploding Wire Plasma in Water

Picture of Load Section

- + Axial symmetry
- + Direct measurements
- + Tamper effect
- + Transparent
- Energy density
- EOS of Water

Electrical conductivity can be directly estimated from reproducible Voltage-Current traces

Semi-empirical fitting of hydrodynamic behavior brings us EOS information

Hydrodynamics of cylindrically exploding plasma

Sedov's solution

Wire explosion

 τ e ~ τ hydro

MHD simulation can predict hydrodynamic structure

Semi-empirical fitting of EOS

High Temperature Shock Heated Plasma

Formation of Quasi-steady State 1-D Strong Shock Wave

• 1-D assumption enables us to use simplified analytical estimation

Analytical Criterion for Radiative Shock Wave

 1-D simplified analytical estimation yields a criterion* of shock speed for radiative regime,

From the requirement of Prad/Pthe > 1

K : Bolzmann's Constant, a: Radiative constant n1: Particle Density, μ 1 : Particle mass

* S.Bouquet, et.al., Astrophysical J. Supp. 127, 245 (2000)

Experimental Arrangement for the Formation of E-M driven 1-D Strong Shock Wave

Quasi-1-D condition was fulfilled by a pair of tapered electrodes and a guiding tube

At low filling pressure, shock speed exceeds Drad

Indicating the existence of radiative front in Strong shock waves (M>100)

Typical Images of Fast Framing/Streak Camera

Visible image changed with shock strength

Comparison can make clear radiative shock structure

Pulse-power-driven Shock Experiments

- Quasi-1D strong shock waves can be formed
- Shock Mach number reached 250 under low pressure condition of Xe
- When the front speed exceeded a critical value Drad, the image structure changed
- Results indicates formation of a radiative shock wave

Accelerator Driven well defined Plasma

We can make energetic medium-to-heavy mass

ion bunch by induction modulator

All Ion Accelerator

Driven by controllable induction modulator
Induction modulator works both for acceleration and confinement
Can accelerate ions with arbitrary masses and charges
Modification of KEK500MeV Booster is planning Balance Eq.

Typical Arrangement of All Ion Accelerator (K.Takayama et al.,)

Ions available in the existing heavy-ion RF synchrotron (SIS18@GSI)

Particle Numbers per SIS18 Cycle

 $C_0 = 216 \text{ m}$ $f_0 = 214 \text{ kHz}$ f = 1 Hz

全種イオン加速器ではこの全ての領域をカバーする事を特徴とする。

KEK 500MeV Booster and Beam Lines for Beam Applications

Advantages of HIB for HED physics

- Well-defined energy deposition
- Large scale-length and long lifetimes
- Controllability of the deposition profile
- Variable energy density

Expected parameter regimes of HED target driven by accelerator (IS) and pulse power devices

Drivers	Induction Synchrotron	Exploding Wires	Pulse-powered Shock Waves
Bunch (Pulse) Length	ns to 10²ns	10 ³ ns	10—10 ³ ns
Specific Energy Deposition	10 ² —10 ⁵ J/g	10 ⁴ J/g	10 ² eV/particle
Specific Power Deposition	10 ⁷ —10 ¹⁴ W/g	10 ¹⁰ W/g	Quasi-steady state
Achievable Temperature	~ 10²eV	2-3eV	>10eV
Density	Variable from solid or form to low density with hydrodynamics	Variable from solid to low density with hydrodynamics	10 ¹⁷ /cm ³
Geometry	Arbitrary (Cylindrical, Plane, Foils)	Cylindrical and uniform profile	1D and steady state

Pulse Power Device

Concluding Remarks

- Pulse power and accelerator based driver bring us a well defined, large scale length, and long life sample for HED physics
- Hydrodynamic behaviors driven by the well defined energy deposition profile are useful test problem for EOS models and transport coefficients of materials in a WD state
- Electro-magnetically driven strong, 1-D, QSS shock waves are formed for radiation hydrodynamics
- Induction synchrotron has a possibility to cover extremely wide parameter region in density-temperature plane

 Mutual efforts of pulse-power driven, accelerator driven, and laser irradiated plasma studies are essential to build reliable data base of matters in HED states

Thank you for your attention