Longitudinal and Transverse Neutralized Beam Compression

Japan - US Workshop December 18, 2006 Berkeley, California

The Heavy Ion Fusion Science Virtual National Laboratory

P.A. Seidl, [a]* J. Armijo,[a,g] D. Baca, [a] F.M. Bieniosek, [a] J. Coleman, [a,f] R. C. Davidson, [d] P.C. Efthimion, [d] A. Friedman, [b] E.P. Gilson, [d] D. Grote, [b] I. Haber, [c] E. Henestroza, [a] I. Kaganovich, [d] M. Leitner, [a] B.G. Logan, [a] A.W. Molvik, [b] D.V. Rose, [e] P.K. Roy, [a] A.B. Sefkow, [d] W.M. Sharp,[b] J.L. Vay, [a] W.L. Waldron, [a] D.R. Welch [e] and S.S. Yu [a]

[a] Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.
[b] Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
[c] University of Maryland, College Park, MD 20742-3511 CA, U.S.A.
[d] Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451, U.S.A.
[e] Voss Scientific, Albuquerque, NM 87108, U.S.A.
[f] University of California, Berkeley, CA 94720, U.S.A.
[g] École Normale Supérieure, Paris cedex 05, France

* PASeidl@lbl.gov.

The Heavy Ion Fusion Science Virtual National Laboratory

Outline

motivation - warm dense matter studies

- beam requirements
- summary of previous measurements
 - transverse focusing of a neutralized ion beam
 - longitudinal compression of a neutralized ion beam
- first simultaneous and longitudinal compression experiments
- e-cloud studies in solenoid transport channels
- next steps: final focusing solenoid + plasma

Neutralized drift compression

Acceleration and velocity ramp for compression
— induction core(s) or other (Pulse Line Ion Accelerator?)

Need to cancel out space charge

-

plasma column with $n_p >> n_b$

The Heavy Ion Fusion Science Virtual National Laboratory

Neutralized Transport Experiment (NTX) demonstrated fusion driver issues

Perveance is the key parameter for final focus and neutralization. NTX covered range of perveance relevant to the driver $K = \frac{2qI_B}{4\pi\varepsilon_o m(\beta\gamma c)^3} \le 10^{-3}$

First round of neutralized drift compression experiments...

injected 10-µsec, K⁺, 280-310 keV, 22-26 mA, 100 Experimental 80 Ideal 60 bunch a portion of beam with induction module 40 Voltage (kV) 20 head to tail velocity ramp, $\Delta v/v \approx 15\%$ (≈ 0.2 s) 0 -20 -40 Plasma column neutralizes space charge -60 -80 -1000 200 1200 400 600 800 1000 Induction Plasma Time (ns) Source module column If T_L limits compression, Quadrupoles Diagnostics bunch duration: box $t = \frac{L}{v^2} \sqrt{\frac{2kT_L}{M}}$ $1 \,\mathrm{m}$ 7

Huge advantage of neutralized compression for high perveance (K \approx 10⁻³)

290

290

E = 300 keV, K⁺ I = 44 mA Solenoids B1=2.445 T B2 = 2.6 T Bunching core 200 kV, 200 ns

~500 x enhancement of intensity on target is possible

plasma sources for 1-2 meter drift compression.

...observed 50x compression in a 1-meter neutralized drift experiment. Good agreement with EM-PIC model

Required **modeling** of the defocusing in bunching module gap due to energy change, time-dependent E_r

Most recent NDCX setup

Beam current – no velocity tilt

Beam Current (bunching module off) 150 360 Faraday Cup (#1) 125 300 Beam Current (mA) Fast Faraday Cup (#2) 100 240 -Marx 180 g 75 120 9 50 Marx 60 25 0 0 -25 -60 8 -1 0 1 2 5 6 7 3 Time (µs)

Simultaneous and longitudinal compression experiments

A new bunching module will increase the voltage amplitude and voltage ramp duration

Beam experiments in 2007.

Gap geometry - design allows for straightforward modifications

1st NDCX longitudinal energy spread measurement $T_I \approx 1.5 \text{ eV}$ (new electrostatic energy analyzer)

Energy Spread at 7.5 μs in Pulse

- $T_{//} \le (\Delta E)^2 / (2E) \le 1.5 \text{ eV}.$
- Upper limit due to coarse measurement intervals, uncertainty of instrumental resolution.
- broadening due to finite entrance slit = 1 mm -> 8%.
- New analyzer can measure up to 1 MeV ions, with resolution few x 10⁻⁴.
- It was used to verify ion acceleration and beam dynamics of the prototype Pulse Line Ion Accelerator module.

valuable for disentangling contribution to focusing limits from initial beam conditions and bunching waveform fidelity.

Electron and gas desorption may degrade the beam quality -->Conducting experiments with e-cloud diagnostic rings in solenoids

Negative electrode inside solenoid: suppress e⁻. Positive electrode between solenoids :collect e⁻. Reverse bias to emit and trap e⁻.

20

e-cloud diagnostics for solenoid beamline

Preliminary results from e-cloud diagnostics

A final focus solenoid is needed to achieve $T_{tgt} \approx 1$ eV. Modeling for NDCX and HCX input beams

Final focusing solenoid + plasma will be tested on on NDCX in 2007.

Summary

Neutralized drift compression:

- Demonstrated longitudinal beam compression with transverse compression
 - T₁ ≈ 1 eV: inferred from compressed pulse width & also consistent with uncompressed beam through new energy analyzer. More measurements planned, valuable for disentangling contribution to focusing limits from initial beam conditions and bunching waveform fidelity.
 - A new induction bunching module may provide compression up to 200x.
- 5-15 Tesla final focus solenoid is planned to increase transverse compression to < 1 mm.

Solenoid transport

 Injected and matching high-perveance beam into solenoid channel. Beam dynamics studies, gas and electron effects...