HIF Direct-Drive Targets / R-T Instability S. Kawata, T. Kikuchi Utsunomiya University

Beam Physics _ Final Beam Bunching
 HIF Implosion & Robust HIB illumination
 Rayleigh-Taylor Instability Study in HEDP

Phys. Rev. ST Accel. Beams 7 (2004) 034201.

Phys. Rev. ST Accel. Beams 7 (2004) 034201.

3D Beam Particle Dynamics

- Longitudinal Transverse Coupling Motions
- Effect of Longitudinal Velocity Dispersion Limitation of Head-to-Tail Velocity Tilt
- Pulse Shape Deformation due to Space-Charge Wave

Develop 3D Particle Code

but, full 3D calculation is hard work...

Code Descriptions

Particle Motions

x, y, z & Px, Py, Pz

Beam Dynamics Analysis during Bunch Compression

HIF Implosion & Robust HIB Illumination

- S. KAWATA, K. MIYAZAWA, T. SOMEYA, T. KIKUCHI, Utsunomiya University, Japan,
- A.I. OGOYSKI, Varna Tech. University, Bulgaria

Robust HIB illumination

 -> HIB radius + Illumination θ
 Result: dz <~ 200-300µm <- Previous Result: dz <~ 20-50µm

 Robust HIB illumination + target implosion

 -> Ongoing
 -> Ongoing

APS-DPP06, October 30-November 3, 2006, Philadelphia, Pennsylvania

Fusion Energy output reduction

• Find out a robust HIB illumination scheme against *dz* in a direct-driven scheme

Detail HIB illumination analyses
 Low-density foam effect on the HIB non-uniformity smoothing

If *dz* requirement is relaxed, requirements for HIB control precision, target positioning, & monitoring precision are relaxed. -> robust HIB illumination scheme & robust target

Parameters

□Pb⁺ ion beam Beam number : 12, 20, 32 Beam particle energy : 8GeV Beam particle density distribution : Gaussian Beam temperature of projectile ions : 100MeV with the Maxwell distribution Beam emittance : 3.2mm-mrad

External pellet radius : 4.0mm Pellet material : Al, Pb + Al

Ζ 0

12-beam

3

2

0

-2

⁴ -³ -2

20-beam

-1 0

2 3

Z

3 х

S. Skupsky and K. Lee, J. Appl Phys. 54, 3662 (1983).

(a) AI pellet structure

(b) Pb+Al pellet structure

Optimization: 1) Beam radius > target radius (4.0mm at present) 2) θ

HIB illumination non-uniformity

Root mean square (rms)

$$\sigma_{rms} = \sum_{i}^{n_{r}} W_{i} \sigma_{rms_{i}} \qquad \sigma_{rms_{i}} = \frac{1}{\langle E \rangle_{i}} \sqrt{\frac{\sum_{j}^{n_{\theta}} \sum_{k}^{n_{\phi}} \langle \langle E \rangle_{i} - E_{ijk} \rangle}{n_{\theta} n_{\phi}}}$$

 $n_r, n_{\theta}, n_{\phi}$: Mesh total number

 $\left< E_i \right>$: Averaged Energy deposition at i-th layer

- E_i : Total energy deposition at i-th layer
- E: Total Energy deposition

Spectrum analysis

$$S_{n}^{m} = \frac{1}{4\pi} \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{2\pi} E(\theta,\phi) Y_{n}^{m}(\theta,\phi) d\phi$$

$$E(\theta,\phi): \text{Energy deposition at each mesh}$$

$$Y_{n}^{m}(\theta,\phi) = P_{n}^{m}(\cos\theta) e^{im\phi} \qquad (n,m) \text{ mode number}$$

 $W_i =$

32-beam, AI target, External pellet radius 4.0mm

Distribution of mode (1,0)

 $dz = 100 [\mu m]$

32-beam Al target External pellet radius 4.0mm

Fuel pellet

Pellet injector

Reactor chamber

center

dx=dy=dz~200-300µm -> non-uniformity 3.0-4.0%

Radiation energy at low density region

*Conversion efficiency (Beam energy to radiation energy)

- 0.5 mm foam : ~ 4.5 %
- 1.0 mm foam : ~ 4.5 %
- w/o foam : ~ 1.5 %

Mixture of direct and indirect mode

Detail HIB illumination analyses

- New Robust HIB illumination scheme was found.
 -> dz ~ 200 ~ 300 μm
- Ongoing: Implosion simulation + HIB detail Illumination -> Preliminary results: Even in a direct-driven target implosion, radiation smoothing effect is expected. A foam layer may help to enhance the smoothing.

HIF Direct-Drive Targets / R-T Instability S. Kawata, T. Kikuchi Utsunomiya University

Beam Physics _ Final Beam Bunching
 HIF Implosion & Robust HIB illumination
 Rayleigh-Taylor Instability Study in HEDP

Beam-induced g has a non-uniformity of δ g

Effect of δg

k	a=0.005	a=0.01
5	25.9	12.9
10	23.6	11.8
50	16.0	8.00
100	11.9	6.00
500	3.50	1.70
1000	1.40	0.70

$R(=(w_1 / w_0) \times 100 \, \text{[\%]})$

parameter

$$g = g_0 + g_1$$
 $g_0 = 1.0 \times 10^{13}$ (m/s^2) $g_1 = 0.1g_0$

 $\Phi = Initial \ perturbation \ amplitude = a \times 6.185 \times 10^5 \quad (m + 1.0)$

Single Mode Simulation [constant gravity]

$$\begin{array}{c}
 \rho_{High} : 10 & g_0 : 1 \\
 \rho_{Low} : 3 & k : 1 \\
 g : g_0 + 0.1g_0 \sin(kx) & k : 1
 \end{array}$$

Single Mode Simulation [constant gravity] $t=0\sim6 [1/\gamma]$ density vorticity

Single Mode Simulation [constant gravity] $t=5 [1/\gamma]$ density vorticity

Single Mode Simulation [oscillation gravity] gravity density 1.0 1.1 gravity μ 2 0.5 1.0 > 0.9 gravity 0.0 1.0 0.0 0.5 0.5 1.0 x [2π] x $[2\pi]$ parameter $g_0: l$ ho_{High} : 10 ho_{Low} : 3 k:1 $g:g_0+0.1g_0\sin(kx)\sin(2\pi ft)$ $f: \gamma \quad \left(\gamma = \sqrt{g_0 k} \right)$ ex. $g_0 = 10^9 \text{ m/s}^2$, $k = 1 [1/\text{ mm}] \rightarrow f = 10^6 [\text{Hz}]$

Single Mode Simulation [oscillation gravity] t=0~10 [1/ γ]

density

vorticity

Single Mode Simulation

oscillation (1[MHz])

Single Mode Comparison (passage of time)

Multi Mode Simulation [constant gravity] density gravity

Sample (beam profile) Simulation [NoOscillation] t=0.2 [µsec] density vorticity

Sample Simulation

oscillation (10 [MHz])

$$t=0.3 [\mu sec]$$

Dynamic R-T Growth Reduction

Successive HIBs induce a dynamically Oscillating g! -> reduce the R-T growth!

HIB axis rotation or swing -> reduce the R-T growth!

SUMMARY: HIF Direct-Drive Targets / R-T Instability S. Kawata, T. Kikuchi Utsunomiya University

Beam Physics _ Final Beam Bunching
 HIF Implosion & Robust HIB illumination
 Rayleigh-Taylor Instability Study in HEDP

