US-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics

Tuesday, 19 December 2006 Bldg. 47 Conference Room Lawrence Berkeley National Laboratory Berkeley, CA USA

+

+

WDM experiments at Tokyo Tech (II): **"Time-resolved single-ion spectrometry for beam-plasma interaction experiments"**

Yoshiyuki Oguri

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Differential pumping system is needed to introduce heavy projectiles into the shock-driven plasma target.

To establish a well-defined target thickness, very small beam apertures are needed.

Pressure requirements:

- Shock tube initial pressure $P_{\rm t} \approx 5$ Torr
- Beam line pressure $P_{\rm B}$ < 10⁻⁷-10⁻⁶ Torr (to avoid charge exchange)

Differential pumping system with very small apertures:

- Target thickness (\approx 1 cm) must be >> relaxation length δw .
- $\delta w \approx$ aperture diameter $D \therefore D$ must be < $\approx \phi 100 \ \mu m!$

A multi-stage differentially-pumped target was developed for the interaction experiment.

Relationship between the tube pressure $P_{\rm T}$, intermediate pressure $P_{\rm I}$ and beam line pressure $P_{\rm B}$ was investigated for different gas-flow rates.

The differential pumping system successfully confined the hydrogen gas in the shock tube as expected.

Experimental result using H₂ gas:

φ100 µm aperture < ≈ mean free path of H₂ gas molecules (≈ 20 µm)
Measured results were fairly-well reproduced by a simple calculation using molecular-flow conductance C (I/s):

The target system is being installed in the beam line of the Tokyo-Tech tandem accelerator.

The whole system is fixed on a movable base (frame) for precise alignment.

Beam

In previous measurements with a laser-plasma target, a TOF method using an MCP detector was applied.

MCPs for TOF (Time Of Flight) measurements:

- High time resolution (< ns)</p>
- Sensitive to "beam current", not to single-particle energy
- Single-ion detection efficiency < 100%</p>
- Very sensitive to surface conditions
- -Noisy
- Expensive

The beam transmission through ϕ 100 μ m apertures is too small to measure the beam as an electric current.

Small aperture \rightarrow single-particle-mode:

To measure low-intensity beams through small apertures, a Si surface-barrier detector was employed.

- Direct single-ion energy measurement by a Si surface-barrier semiconductor detector (SSD):
 - Energy-sensitive, single-particle detection
 - -100% detection efficiency
 - -Much more robust than MCPs
 - —Low time resolution (~ 1 μ s)
 - -No noise

Active area: 50 mm² Sensitive depth: 300 μm Surface Au thickness: < 40 μg/cm²

For time-resolved measurements, the SSD has to be used in combination with a fast beam deflector.

Many shots are needed to detect one particle:

A pair of beam deflection plates and a beam slit were used to construct the fast beam kicker.

A solid-state fast high-voltage switch was employed as the switching device:

So far the minimum ON-time of the kicker is limited to \approx 120 ns owing to the performance of the switch.

Measured deflection voltage waveforms of the fast beam kicker:

- Rise time \approx 40 ns, decay time \approx 200 ns
- Measured ON-time = input pulse duration, down to \approx 120 ns
- The minimum ON-time of the switch in the catalog is 60 ns!

Synchronization were confirmed by measuring the distribution of the arrival time of ions.

- The beam intensity was adjusted so that the count rate were less than one particle per shot.
 - The arrival time of 50 keV/u⁷⁹Br projectile was directly measured using
 - the "T-out"-signal* of the preamplifier. *Short rise time, but no information of particle energy
 - 90% of the all particles were detected during the 200 ns.

Duration of the ON-time of the kicker was cross-checked by measurement using an MCP detector.

Current waveform of the 50 kev/u ⁷⁹Br pulsed beam measured by an MCP:

- The target aperture was removed so that ~10³ ions can impinge on the detector per shot.
- Measured pulse duration = 180 ns \approx ON-time of the deflection voltage = 200 ns

Energy of projectiles behind the target is evaluated from the pulse height of the linear amplifier signal.

- Synchronization scheme between the beam injection by the kicker and detection of single ions:
 - Projectile: 50-keV/u ⁷⁹Br
 - Aperture size: ϕ 1 mm
 - No target was used. (only apertures)

For static targets, the measured energy loss was in good agreement with other data.

Comparison between the experimental results and other data:

- Projectile: 10-50 keV/u ⁷⁹Br
- Target: 10 μg/cm² carbon-foil

To test the timing performance of the system, projectile energy loss in a laser-plasma target was measured.

- The shock-driven plasma target and the differential pumping system is NOT YET installed in the beam line!
- As a substitute, a laser-plasma target was prepared as a short-lived target:
 - A polyethylene plate was irradiated with a pulsed laser to produce a plasma blow.
 - Diagnostic measurement of the plasma was not performed.

By using the difference of the arrival time, signals of the plasma light and the particle can be separated.

Waveforms from the linear amplifier were fitted with two Gaussian functions:

- Projectile: 50 keV/u ⁷⁹Br ions
- Plasma light was not completely rejected by the dipole magnet
- Particle energy was extracted from the height of particle component.

Target atomic density ~ 10^{18} cm⁻³ (?)

We have succeeded in time-resolved measurement of projectile stopping power in the short-lived plasma blow.

Preliminary result on the time-resolved energy loss measurement:

- Energy loss $\Delta E \approx 20$ keV
- Target thickness $\Delta x \approx 15$ mm

 $- dE/dx(cold (CH_2)_n) \approx 6 \text{ MeV}/(mg/cm^2)$

Concluding remarks

- The differential pumping system using two small thin apertures successfully confined the hydrogen gas in the shock tube as expected.
- By using a surface-barrier Si semiconductor charged-particle detector, we could measure –*dE/dx* of single ions of 10-50-keV/u⁷⁹Br in thin carbon foils with acceptable accuracies.
- We have succeeded in time-resolved measurement of projectile energy loss in a laser plasma with a life of ~100 ns.
- The beam burst duration can be further reduced by employing a faster switch.
- Owing to the poor alignment performance, we have not yet succeeded in particle transport through 100-µm-double apertures.