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Motivation

• Ion stopping in dense plasma is an important issue in
heavy ion fusion research.

• Coulomb coupling effects in dense plasma bring
nonlinearity to plasma stopping power.

• The nonlinear effect could modify the beam energy
deposition profile and shift the Bragg peak.

• So far, no experimental result on the nonlinear ion-
stopping has been obtained.
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Objectives

• To develop a plasma target suitable for
nonlinear ion-stopping experiments with low-
energy projectiles.

• To develop an energy-loss-measurement
system specialized for the nonlinear stopping
experiment.

• To experimentally demonstrate the nonlinear
ion-stopping in dense plasma.
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• Ideal plasmas ~ Linear stopping
– Induced decelerating field Eind ∝ q
– dE/dx = q x Eind ∝ q x q = q2 (q:

projectile charge)
• Non-ideal (dense, not hot) plasmas ~

Nonlinear stopping
– Induced decelerating field Eind ∝ qm

(m < 1)
– dE/dx = q x Eind ∝ q x qm = q1+m = qn

(1 < n < 2)
• Beam plasma coupling constant:

• MD simulation predicted nonlinear
stopping is observable even in a semi-
nonlinear regime. γ ≥ 0.1

Nonlinear effects are expected for
projectile stopping in dense plasmas
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Methods for dense plasma generation
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Basic requirements for plasma target

• Beam-plasma coupling constant:
– To observe nonlinear ion stopping.
– γ strongly depends on projectile charge and velocity.
– Plasma coupling constant Γ > 0.1 can be alternative.

• Ionization degree α >> 0.5
– Free-electron stopping power must be comparable or larger

than bound-electron stopping power.

• Target thickness > 5 mm
– To avoid deleterious effects of boundary layer on the

uniformity of shock plasma.

• Energy loss ΔE/E < ~0.2
– To assume almost constant projectile velocity in a target.
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Expected target plasma parameters were
examined by using the Rankin-Hugoniot relation.
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• To take into account “real-gas” effects, we use SESAME EOS data.
• Plasma coupling constant has the maximum with respect to shock

speed, which indicates that the optimum condition exists.
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To meet requirements for target plasma, shock
speed must be larger than 50 km/s (M≈38).

• Low pressure was advantageous to obtain high ionization
degree, but lower limit was determined by Γ > 0.1.
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An electromagnetically driven shock tube was
developed for off-beam plasma experiments.

• A strong shock wave was driven by the piston
discharge plasma accelerated by jxB force.
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Experimental setups for shock plasma
diagnostics

(1) Imaging with
streak camera:
– shock speed

(2) Laser interferometry:
– electron density
distribution

(3) Time-resolved
spectroscopy:
– electron density
– temperature
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Shock plasma and piston plasma were clearly
observed with a fast streak camera.

30

Time (μs)0 1

P0=1 TorrP0=1 Torr 5 Torr5 Torr 9 Torr9 Torr

10

Shock frontShock front

Piston
plasma
Piston
plasma

D
is

ta
nc

e 
(m

m
)

Time (μs)0 1 Time (μs)0 1

• Emission strength from shock plasma depends on the initial
pressure.

• Shock speed was evaluated from the slope of the shock trace.
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Shock speeds over 50 km/s (M≈38) were
obtained at lower initial pressure.

• The shock speed decreases with increasing pressure.
• To get higher shock speed, we need to upgrade the

driving discharge circuit.
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Electron density distribution was measured by
two-wavelength laser interferometry.
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The uniformity of electron density across the
tube was acceptable just behind the first shock.

• The spatial distribution of the electron density was examined at 100 ns behind
the first shock.

• The electron density dropped near wall, which is due to the growth of
boundary layers.
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Electron density was also evaluated from the
Stark broadening of Hβ line.

• An electron density of 6 x
1017 cm-3 was obtained
just behind the 1st shock.

• The electron density
increased with increasing
initial pressure.
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Temperature was determined to be about 1.6 eV
behind the shock from Hβ/continuum ratio.

• The observed temperatures was almost the same for different initial
pressures.

• Rapid temperature rise around 1 µs was due to the arrival of the
discharge plasma (these values are doubtful because of the limitation
of the method).
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To check the reliability of the diagnostics, we
compared the values obtained different
methods.

• The densities obtained by spectroscopy and
interferometry showed good agreement with each other
except for the values just after the first shock.
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Observed densities and temperatures were
qualitaitively consistent with the predictions.

• Measured densities were smaller than the predictions by
a factor of 2.

• Measured temperatures were higher than the predictions.
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Mean ion charge and plasma coupling constant
Γ almost satisfied the requirements.

• Because of higher temperature than the predictions, the
mean ion charge was high enough, but plasma coupling
constant was limited.
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Conclusion

• We developed a shock-driven plasma generator for off-
beam experiments and achieved a shock speed more
than 50 km/s (M≈38) with an initial pressure of 1 Torr.

• We examined the shock plasma properties with laser
interferometry and spectroscopy.

• Measured electron density and temperature were almost
consistent with the prediction by the Hugoniot relation.

• Requirements for mean ion charge Zi and plasma
coupling parameter Γ were almost satisfied, but higher
shock speed is needed to get higher Γ values.


