WDM experiments and plans

Frank Bieniosek

John Barnard, Alex Friedman, Enrique Henestroza, Jin-Young Jung, Matthaeus Leitner, Steve Lidia, Grant Logan, Richard More, Pavel Ni, Prabir Roy, Peter Seidl, Will Waldron

Heavy Ion Fusion Science Virtual National Laboratory

11th US-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics

This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344, the University of California, LBNL under Contract Number DE-AC02-05CH1123 and PPPL under contract DEFG0295ER40919.

The Heavy Ion Fusion Science Virtual National Laboratory

Outline of talk

Overview

Status of experimental facility:

- -- Targets, target chamber, target diagnostics installed and successfully operated
- -- WDM experiment (Run 1) Aug. Nov. 2008: 12 shots
- -- Comparisons between initial experiment and models underway

Experiment plans

- -- Run 2 to begin early 2009 with improved:
 - -beam parameters
 - -target manipulator for rapid shot repetition rate -diagnostics
- -- Study liquid-gas interface (droplets) in targets
- -- High electron affinity, porous targets, etc.

Ion beams provide a tool for generating homogeneous warm dense matter.

- Warm dense matter (WDM)
 - T ~ 0.1 to 10 eV
 - $-\rho \sim 0.01$ -1 * solid density
- Strategy for uniform energy deposition: operate near flat portion of dE/dx curve
- Pedestal for heavy ions at lower beam energy (~NDCX-1)
- Place Bragg peak at center of foil (NDCX-2)

Characteristics of ion beam driven HEDP/WDM.

Precise control of energy deposition

Sample size large compared to diagnostic resolution volumes (~ 1's to 10's μ thick by ~ 1 mm diameter)

High efficiency, uniform energy deposition (<~ 5%)

Able to heat any target material (conductors, insulators, foams, powders, ...)

A benign environment for diagnostics

High repetition rates (10/hour to 1/second)

WDM target chamber is installed on NDCX-I.

WDM target chamber is installed on NDCX-I.

WARM DENSE MATTER TARGET CHAMBER

Simple model of target heating predicts T ~ 0.3 - 0.4 eV using NDCX-1 uncompressed beam.

Dependence of equilibrium temperature on heating rate shows effect of increasing beam energy flux on target.

Experiments include WDM target and beam diagnostics.

- 150 nm Au

- 350 nm C

- 120 nm Pt

Target assembly protects target from beam by pinhole or gold cone.

Beam imaged on target without pinhole

Gold cone concentrates ions on target for increased beam intensity.

TRIM calculations for a single reflection

- Cone acts as grazing incidence mirror. Enhanced ion intensity using cone has been demonstrated.
- Shields target from unwanted heating by edge of beam
- Produces grazing incidence secondary electrons for reduced space charge
- Homogenizes energy flux on target
- No chromatic effects

Ultra-fast optical pyrometer for experiments at NDCX Α 20 Fiber input Ε F G Β (₽` С Brightness temperatures, shot #8 (supported Au,10/20/08). 3500 750 nm -1000 nm -1200 nm 1400 nm 3000 FFC (a.u,) Theory (80 mJ/gr/us) £ Temperature [K] 2000-#1: 750 nm-IS IT Channel #2: 1000 nm+-Channel #3: 1400 nm+ 1500 to 14 2.5 Time [us] 5 0.5 1.5 3.5 2 3 4 4.5

Typical data in foil targets shows heating from the prepulse and compressed pulse.

Streak - spectrometer data in Au target showing emission lines from heated gold.

Targets show drop in brightness temperature at ~3 μs (when model approaches equilibrium).

Formation of $\sim \mu m$ size droplets could explain temperature drop. Other possible explanations include rapid vaporization, transparency, fog (very small droplets).

We are pursuing a series of experiments in warm dense matter.

- Porous target experiment at GSI to compare response of solid/porous targets:
 - Performed Dec. 2006; Analysis underway
- "Black glass" experiment performed on HCX: studying optical changes (e.g. insulator conductor transition) in materials
- First beam-driven WDM target experiments on NDCX use uncompressed pulse to reach boiling point, then compressed pulse to explore liquid-gas phase transition (e.g. droplet, bubbles).
 - T > 0.3 eV, NDCX-1
- Well defined transition behavior (e.g. silicon, carbon) will help calibrate temperature diagnostics (carbon → no liquid droplets).
- Low density porous target studies to lengthen target expansion time (e.g. gold black on NDCX-1)

We are pursuing a series of experiments in warm dense matter (cont.).

- High electron affinity WDM targets (gold, iodine)
 - T > 0.4 eV, NDCX-1/NDCX-2
- Two-phase liquid vapor WDM targets: fragmentation, droplet formation
 T ~ 0.5 1 eV, NDCX-1/NDCX-2
- Other EOS studies; critical point
 - T ~ 1 eV, NDCX-2
- Beam shock-wave coupling in cryogenic targets (Ne, H)
 - NDCX-2
- Other:
 - Silicon target (NDCX and GSI); relevant to NIF damage control
 - Thin target dE/dx (e.g. carbon), beam scattering, charge state
 - Micro-implosions driven by ion beam

Experiment in high electron affinity targets

- Unusual material dominated by +/- ions
- narrow temperature range; e.g. 0.4 to 0.7 eV for iodine at 0.1 g/cc.
- radiation from charge exchange
- expect conduction by charge transfer
- unequal mobility for electrons and holes
- Other: optical behavior, metal-insulator transition

NDCX-2 TARGET POINT DESIGN AND DRIVER REQUIREMENTS FOR >1 eV TARGET HEATING

ALUMINUM TARGET FOIL

Thickness (for $<5\% \Delta T$):

- ~3 micron, solid density foil
- ~25 micron, 10% solid density foam

Exiting Ion Beam Available for dE/dx Measurement

LITHIUM ION BEAM BUNCH

Final Beam Energy: Final Spot Size : Final Bunch Length: Total Charge Delivered: Normalized Emittance: 2.8 MeV <1 mm diameter <1 ns (\cong <1 cm) 0.03 micro-Coulomb (~ 2x10¹¹ particles or I_{max} ~ 42 A) 0.4 pi-mm-mrad

NDCX-2 • Heavy Ion Fusion Science - Virtual National Laboratory

Summary

- Ion beams provide a new tool to generate homogeneous WDM.
- Pulsed accelerator NDCX and pulse compression technique have been developed as a new HEDLP user facility for studying WDM physics.
- We have developed and tested initial set of target diagnostics, built a new target chamber, and performed initial experiments.
- Initial experiments take advantage of beam pre-pulse to pre-heat foils; goal is to study liquid-gas phase transition region.
- Initial results suggest interesting physics and target modeling is going on.
- Future experiments with improved NDCX-1 and NDCX-2 will explore many aspects of WDM physics, including high electron affinity targets, porous targets, etc.

Extra slides

Porous target slows expansion compared to response of solid target to ion beam pulse.

- Beam range is longer in porous target, slowing down hydro expansion time
- Very low density porous targets, such as gold black, can increase expansion time by factor ~100
- Target expansion time can be >> compressed pulse length ~2 ns.
- Modeling of porous target data from GSI is underway

Transient optical transmission experiments in quartz fiber performed on HCX (1 MeV K⁺ ion beam).

Optical transmission experiment: look for difference in fiber transmission with and without beam.

Initial experiment shows possible weak effect at 10 μs , long wavelengths \clubsuit

Simulations of NDCX-I planar targets predict temperatures of a few tenths of an eV.

Simulation assumptions: Ion energy: 350 keV Energy fluence: 0.1 J/cm² Spot radius: 0.5 mm Pulse duration: 2ns FWHM Total energy deposited: 0.8 mJ Peak current: 1 A (40 times compression) Total charge: 2.3 nC

25

NDCX is designated by DOE as a HEDLP user facility.

Facility	Diagnostics	
First beam-target experiment: Aug. 2008 Beam ions: 300-350 keV K ⁺ Long pulse on target: Pulsewidth: 2-20 msec Enong: 25 mT/ c/cm ²	Optical: Fast optical pyrometer Visible streak camera ICCD gated cameras Visible spectometer/ streak- spectrometer VISAR	
Short pulse on target: Pulsewidth: 2 ns Energy: 10 mJ/cm ² Peak Power:5 MW/cm ²	Other: Manipulators for Target and Diagnostic positioning Under development: Laser transmission, Pagen transmission current monitor	G
eam Ion Range: 20-400 nm epetition rate: p to 1 shot per 20 econds	8 user proposals under HEDLP program announcement	Facility POC's Web site Shots available for external users
Target temperature : ~0.3 eV		Targets

General Information

	Dr. Grant Logan (510-486-7206)	
	Dr. Peter Seidl (510-486-7653)	
	Dr. Frank Bieniosek (510-486-	
Facility POC's	5456)	
Web site	http://www-afrd.lbl.gov/fusion.html	
Shots available		
for external		
users	Based on request	
Targets	Foils; coatings on substrate	

The Heavy Ion Fusion Sciences Virtual National Laboratory

