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Goals and Strategies

• To get
• Self-consistent combination of EOS and transport 

coefficients of matter in WD state
– Conductivity scaling
– Hydrodynamics of WDM with well-defined condition
– Measure the relaxation time

• EOS of Hydrogen at 6000K and 200Gpa
– Pulse-power assisted beam drive
– Behavior of statically tamped target



Wire-explosion in water
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Semi-empirical fitting of hydrodynamic behavior 
brings us EOS modeling



Equation of State (EOS)
-> for Water: IAPWS95[2]

-> for Wire: QEOS[3] or Ideal EOS

Comparison of numerical results with experimental observation

[2] IAPWS Released on the IAPWS Formulation 1995,  
IAPWS Secretariat(1996)

[3] R. M. More, et. al., Phys. Fluids 31, 3075 (1988)

[2] IAPWS Released on the IAPWS Formulation 1995,  
IAPWS Secretariat(1996)

[3] R. M. More, et. al., Phys. Fluids 31, 3075 (1988)

Magneto-Hydrodynamic Simulation

Initial Condition
and Energy Input

( )Tpp ,ρ=Hydrodynamics



Temperature measurements by radiation pyrometer
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Re-plotted conductivity has a minimum 
around (ρ/ρs) ～ 1/30
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We can draw Zeff・τ vs ρ based on a 
classical conductivity model
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Q τ： Relaxation time



Zeff・τ decreases almost linearly down to the 
minimum in log-log plane

ττ effeff Z=

T=5000K(±10%)

τeff~ρ-2.5τeff~ρ-1.5



Conductivity scaling and estimation of relaxation time 
are expected to allow us to estimate a self-consistent 

combination of transport coefficient and EOS
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Beam driven target 



Layout of the KEK Digital Accelerator

Induction acceleration cell
LINAC実験室

LINAC

2.5kV 50kW

Switching power supplyDC power supply

2.5 kV, 1MHz

Ion source

KEK digital accelerator
former 500 MeV Booster PS 



Expected Specifications of Digital Accelerator



Advantages and strategy of 
Beam-driven WDM/HED physics 

• Accelerator based drivers bring us a well defined, large scale length, and long-life sample 
for WDM/HED science

• Hydrodynamic behaviors driven by the well defined energy deposition profile are useful 
test problem for EOS models and transport coefficients of materials in a WD state

• Our Strategy

• Comparative study of experiments in a well-defined condition* and corresponding 
numerical simulations

– *The geometry should be as simple as possible

– *The time scale should be larger than 
• the hydro-time and 
• the equilibration time



Beam Parameters for Target Irradiation

Beam Condition
-1×1010 particles/bunch
-14GeV, uranium projectile
-100ns pulse duration
-Gaussian distribution in radial direction
-no beam emittance



Free Expansion makes a Complex Structure

Strongly Nonuniform Target Structure  (at 100ns)
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Tamper provides a Quasi-uniform State up to 75ns
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Molecular Hydrogen
Metallic Hydrogen
Rock and/or Ice

Transition Layer

200GPa, 6000K

Heated by HIB

Compressed by 
Pulse Power

Metallic Shell Compress 
the Hydrogen Ice
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Self-consistent combination of transport 
coefficient and EOS
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Beam target

Hydrogen at 6000K, 200GPa



Expected range of pulse power and accelerator 
driven HED materials

Strong E-M Shock Waves

Wire Discharged Plasma in Water Plasma Target driven by 
Accelerator (ID-S)

•Induction synchrotron has a possibility to cover extremely wide 
•parameter region in density-temperature plane



Concluding Remarks

• Strategy to derive self-consistent combination 
of EOS and transport coefficient of WDM

• Pulse-Power-assisted HIB target is proposed 
for Hydrogen EOS study in critical WD 
parameter region.


