Beam and/or Pulse Power driven WDM Science in TIT

Kazuhiko HORIOKA

Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Japan

Research Group

- Tokyo Institute of Technology
 - Kazuhiko Horioka (High Energy Density Science)
 - Yoshiyuki Oguri (Accelerator Science)
 - Jun Hasegawa (Plasma Physics)
 - Tohru Kawamura (Atomic Physics)
 - Mitsuo Nakajima (Accelerator Technology)
 - Masahiro Ikoma (Planetary Science)
- Utsunomiya University
 - Shigeo Kawata (Plasma Physics)
- Nagaoka University of Technology
 - Takashi Kikuchi (Beam Physics)
- Nihon University
 - Toru Sasaki (MHD Simulation)
- KEK
 - Ken Takayama (Accelerator Science)

Goals and Strategies

- To get
- Self-consistent combination of EOS and transport coefficients of matter in WD state
 - Conductivity scaling
 - Hydrodynamics of WDM with well-defined condition
 - Measure the relaxation time
- EOS of Hydrogen at 6000K and 200Gpa
 - Pulse-power assisted beam drive
 - Behavior of statically tamped target

Wire-explosion in water

Semi-empirical fitting of hydrodynamic behavior brings us EOS modeling

Magneto-Hydrodynamic Simulation

Comparison of numerical results with experimental observation

Temperature measurements by radiation pyrometer

Re-plotted conductivity has a minimum around $(\rho / \rho_s) \sim 1/30$

8

(b) Aluminum

(c) Tungsten

0

$T=5000K\pm 10\%$

We can draw Zeff · τ vs ρ based on a classical conductivity model

$$\sigma = \sigma(\rho, T)$$

$$\sigma = \sigma_T(\rho) = \frac{e^2 n_e \tau}{m_e} = \frac{e^2 \rho}{A m_p m_e} (Z_{eff} \tau)$$
$$(:: n_e = Z_{eff} n_i) \qquad \tau : \text{Relaxation time}$$

$$\left(Z_{eff}\tau\right) = f(\rho,\sigma)$$

Zeff• τ decreases almost linearly down to the minimum in log-log plane

(a) Aluminum

(b) Tungsten

 $T=5000K(\pm 10\%)$

Conductivity scaling and estimation of relaxation time are expected to allow us to estimate a self-consistent combination of transport coefficient and EOS

Beam driven target

Expected Specifications of Digital Accelerator

Ion Beams provide d from the KEK digital accelerator (2010-2012)

Species	A/maxZ	Max	number/bunch	number/sec	beam size	LET in	Range in	Range in	Range in
(typical		energy/amu			(mm ²)	water	water	AI (mm) *	Pb (mm)
example)		(MeV)				(keV/µm	(mm) *		*
		• •)			
Gas Ion									
Н	1/1	500	3.5 x 10 ¹⁰	3.5 x 10 ¹¹	1 ~ 10⁴	0.28	1160	549	197.4
He-3	3/2	248.5	1.75 x 10 ¹⁰	1.75 x 10 ¹¹	1 ~ 10 ⁴	1.58	279	133	49.6
He	4/2	146.8	1.75 x 10 ¹⁰	1.75 x 10 ¹¹	1 ~ 10⁴	2.22	151	72	27.6
С	12/6	146.8	5.8 x 10 ⁹	5.8 x 10 ¹⁰	1 ~ 10⁴	19.6	51	25	9.4
N	14/7	146.8	5.0 x 10 ⁹	5.0 x 10 ¹⁰	1 ~ 10 ⁴	27.2	43	21	7.9
0	16/8	146.8	4.0 x 10 ⁹	4.0 x 10 ¹⁰	1 ~ 10 ⁴	39.74	38	18	7.0
Ne	20/10	146.8	3.5 x 10 ⁹	3.5 x 10 ¹⁰	1 ~ 10 ⁴	62.09	30	14.6	5.6
Ar	40/18	120.5	1.9 x 10 ⁹	1.9 x 10 ¹⁰	1 ~ 10 ⁴	215.30	13	6.2	2.4
Metal Ion									
Fe	56/26	127.8	1.3 x 10 ⁹	1.3 x 10 ¹⁰	1 ~ 10⁴	406	10.2	5.0	1.9
Cu	63/29	125.7	1.2 x 10 ⁹	1.2 x 10 ¹⁰	1 ~ 10 ⁴	511	9.1	4.4	1.7
Au	197/79	96.8	4.4 x 10 ⁸	4.4 x 10 ⁹	1 ~ 10 ⁴	4393	3.1	1.5	0.6
RI Ion									
(life time)									
C-11	11/6	172.5	5.8 x 10 ⁹	5.8 x 10 ¹⁰	1 ~ 10⁴	17.6	62.1	29.9	11.3
(20.4 m)									
Ne-18	18/10	178.5	3.5 x 10 ⁹	3.5 x 10 ¹⁰	1 ~ 10⁴	48.2	38.4	18.5	7.0
(1.67 sec)									
Cluster Ion		(keV)**							
C-60	720/7	55							
Insulin	5.8x10 ³ /6	0.06							
Albumin	6.6x10 ⁴ /50	0.033							

Magnetic rigidity: $B\rho$ = 1.1 T x 3.3 m = 3.633 m · T, f = 10 Hz, V_{inj} =200 kV

Range and LET are calculated using the SRIM code.

* mean ion depth

** (Z/A)2 e2 (Bp)2 /mp

Advantages and strategy of Beam-driven WDM/HED physics

- Accelerator based drivers bring us a well defined, large scale length, and long-life sample for WDM/HED science
- Hydrodynamic behaviors driven by the well defined energy deposition profile are useful test problem for EOS models and transport coefficients of materials in a WD state
- Our Strategy
- Comparative study of experiments in a well-defined condition* and corresponding numerical simulations
 - *The geometry should be as simple as possible
 - *The time scale should be larger than
 - the hydro-time and
 - the equilibration time

Beam Parameters for Target Irradiation

Beam Condition

- -1 × 10¹⁰ particles/bunch
- -14GeV, uranium projectile
- -100ns pulse duration
- -Gaussian distribution in radial direction
- -no beam emittance

Tamper provides a Quasi-uniform State up to 75ns

HIB Target assisted by PP-compression Scheme can contribute Planetary Science

Self-consistent combination of transport coefficient and EOS

Wire explosion

 $\sigma_{DC}, \rho, T, \sigma(\omega)$

 $\rho = \rho(T, Z_{eff})$

Beam target

 $\rho, E_{in}, Hydro, \sigma(\omega)$

 $P = P(\rho, E_{in})$

Hydrogen at 6000K, 200GPa

Expected range of pulse power and accelerator driven HED materials

Induction synchrotron has a possibility to cover extremely wide
parameter region in density-temperature plane

Concluding Remarks

- Strategy to derive self-consistent combination of EOS and transport coefficient of WDM
- Pulse-Power-assisted HIB target is proposed for Hydrogen EOS study in critical WD parameter region.

