Eleventh US-Japan Workshop

Energy Deposition Profile of Heavy-lons in Warm Dense Targets

Yoshiyuki Oguri

Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Tokyo Tech)
 produce "Warm Dense Matter (WDM)" in laboratories.

- Ion-driven WDM facility planned by US-HIFS-VNL¹:
- Sub-range solid target \rightarrow Homogeneous heating using the "Bragg peak"
$-\approx 1 \mathrm{MeV} / \mathrm{u}$ heavy projectiles \rightarrow Moderate cost
However, the Bragg curve shape can change during irradiation by
- increase of temperature
- decrease of density (if hydro expansion is not negligible).

Objective: To investigate the change of energy

 deposition profile in sub-range targets during irradiationRequirements for the $d E / d x$ calculation:

- Stopping power in targets with a given temperature and a given density must be evaluated.
\rightarrow Not very precise, but robust approach is needed.
- Intermediate velocity around the Bragg peak ($v_{\mathrm{p}} \approx v_{\mathrm{e}}$)
\rightarrow Neither Bethe $\left(v_{\mathrm{p}} \gg v_{\mathrm{e}}\right)$-, nor LSS/Firsov $\left(v_{\mathrm{p}} \ll v_{\mathrm{e}}\right)$ approaches can be applied.
\rightarrow More general method must be employed.
- Heating starts from room temperature and solid-state (or foam) density. \rightarrow Numerical results must be consistent with those on well-established stopping power data for cold matter, such as SRIM².
Main issues:
- Calculation with beam- and target parameters inspired by a VNL future scenario ${ }^{3}$:
- ${ }^{23}{ }_{11}$ Na projectile; $\approx 1 \mathrm{MeV} / \mathrm{u}, \approx 1 \mathrm{GW} / \mathrm{mm}^{2}, \approx 1 \mathrm{~ns}$
- ${ }^{27}{ }_{13} \mathrm{Al}$ target; 1-100\% solid density
- Coupling with a hydrodynamic code the electronic stopping power near the Bragg peak.
- The target atom was divided into many shells, and contribution of each shell was added to calculate the total stopping power:
- Electronic stopping cross section S_{e} was calculated by integrating differential scattering cross section $d \sigma / d(\delta E)$ over all possible energy transfer:

$$
S_{\mathrm{e}}=\left.4 \pi \int_{0}^{R_{\mathrm{ws}}} \int_{0}^{\infty}\left\{\int_{\delta E_{\min }}^{\delta E_{\max }} \delta E \frac{d \sigma}{d(\delta E)}(1-g) d(\delta E)\right\}\right|_{r, v_{\mathrm{e}}} f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) d v_{\mathrm{e}} r^{2} d r
$$

improved since HIF2008!
$R_{\text {ws }} \quad:$ Wigner-Seitz radius $R_{\text {Ws }}=\left(3 n_{\text {atom }} / 4 \pi\right)^{1 / 3}$
$\delta E \quad$: Energy transfer by a projectile-electron collision
$\delta E_{\text {min }} \quad$: Minimum energy transfer
$\delta E_{\max }$: Maximum energy transfer
$f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right)$: Electron density distribution in phase space
$g \quad$: Final state $\left(v_{\mathrm{e}}=v_{\mathrm{e}}{ }^{\prime}\right)$ occupation

- Finite temperature Thomas-Fermi model:

$$
f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) \equiv\left(\frac{1}{m_{\mathrm{e}} \pi^{2} \hbar^{3}}\right) \frac{1}{1+\exp \left(\frac{m_{\mathrm{e}} v_{\mathrm{e}}{ }^{2} / 2-e \phi(r)-E_{\mathrm{F}}}{k T}\right)} .
$$

To take into account the target electron motion,

 a classical collisional model was employed.The projectile and the target electrons were assumed to be point charges:

- Differential scattering cross section ${ }^{4}$ corresponding to an energy transfer δE for isotropic electron velocity distribution:

$$
\begin{aligned}
& \frac{d \sigma}{d(\delta E)}=\frac{\pi}{3} \frac{q^{2} e^{4}}{\left(4 \pi \varepsilon_{0}\right)^{2} v_{\mathrm{p}}} \times F \\
& F \\
& \equiv 3 v_{\mathrm{e}}^{\prime 2}-v_{\mathrm{e}}^{2} \quad \text { for } 0<\delta E \leq \delta E^{*} \\
& \\
& \equiv \frac{\left(v_{\mathrm{p}}^{\prime}+v_{\mathrm{p}}\right)^{3}+\left(v_{\mathrm{e}}^{\prime}-v_{\mathrm{e}}\right)^{3}}{2 v_{\mathrm{e}}} \text { for } \delta E^{*} \leq \delta E<\delta E_{\max }
\end{aligned}
$$

Energy transfer δE

- Maximum energy transfer:

$$
\delta E_{\max } \equiv 2 m_{\mathrm{e}} v_{\mathrm{p}}\left(v_{\mathrm{p}}+v_{\mathrm{e}}\right) \quad\left(\delta \mathrm{E}^{*} \equiv 2 m_{\mathrm{e}} v_{\mathrm{p}}\left(v_{\mathrm{p}}-v_{\mathrm{e}}\right)\right)
$$

- Velocities after the collision:

$$
v_{\mathrm{p}}^{\prime} \equiv \sqrt{v_{\mathrm{p}}^{2}-\frac{2 \delta E}{m_{\mathrm{p}}}}, v_{\mathrm{e}}^{\prime} \equiv \sqrt{v_{\mathrm{e}}^{2}+\frac{2 \delta E}{m_{\mathrm{e}}}},
$$ determined by "Local plasma approximation (LPA)".

Electron cloud around the nucleus = electron gas \approx inhomogeneous plasma:
$-\delta E_{\text {min }} \approx$ Local plasmon energy $=\gamma \hbar \omega_{\mathrm{p}}(r) \quad(\gamma$: Correction factor $\approx \sqrt{2})$

- Local plasma frequency $\omega_{\mathrm{p}}(\boldsymbol{r})=\sqrt{\frac{e^{2} n_{\mathrm{e}}(\boldsymbol{r})}{\varepsilon_{0} m_{\mathrm{e}}}}, n_{\mathrm{e}}(\boldsymbol{r})=n_{\mathrm{eb}}(\boldsymbol{r})+n_{\mathrm{ef}}(\boldsymbol{r})$

Fermi-degeneracy due to the strong coupling was taken into account for the scattering cross section:

- Pauli-exclusion due to Fermi-degeneracy
\rightarrow Effective scattering cross section
\propto Vacancy of the final state

$$
=1-\text { Occupation }=1-g
$$

- Fermi-Dirac occupation function:

$$
g\left(r, v_{\mathrm{e}}^{\prime}\right) \equiv \frac{1}{1+\exp \left(\frac{m_{\mathrm{e}} v_{\mathrm{e}}^{\prime 2} / 2-e \phi(r)-E_{\mathrm{F}}}{k T}\right)}
$$

v_{e} ': Electron velocity after collision

$\phi(r)$: Electrostatic potential, E_{F} : Fermi energy

Distribution of target electron velocity was taken into

 account also in the projectile charge calculation.Projectile charge q was determined by relative velocity between the projectile and target electrons:

$$
q(r)=z_{\mathrm{p}}\left\{1-\exp \left(-\frac{v_{\mathrm{p}}}{v_{\text {rel }}(r)}\right)\right\}
$$

- Averaged relative velocity for isotropic electron motion:

$$
v_{\text {rel }}(r) \equiv \frac{\left(v_{\mathrm{p}}+\left\langle v_{\mathrm{e}}(r)\right\rangle\right)^{3}-\left|v_{\mathrm{p}}-\left\langle v_{\mathrm{e}}(r)\right\rangle\right|^{3}}{6 v_{\mathrm{p}} v_{\mathrm{e}}(r)}
$$

Nuclear stopping ${ }^{5}$ was included to calculate the total stopping cross section:

- Total stopping $S_{\text {calc }}=$ Electronic stopping $S_{e}+$ Nuclear stopping $S_{n}{ }^{*}$:

$$
\begin{aligned}
& S_{\mathrm{n}}=\frac{S_{\mathrm{n}}\left(8.462 z_{\mathrm{p}} Z_{\mathrm{t}} A_{\mathrm{p}}\right)}{\left(A_{\mathrm{p}}+A_{\mathrm{t}}\right) \sqrt{z_{\mathrm{p}}^{2 / 3}+Z_{\mathrm{t}}^{2 / 3}}} \\
& S_{\mathrm{n}} \equiv \frac{0.5 \ln (1+\varepsilon)}{\left(\varepsilon+0.10718 \varepsilon^{0.37544}\right)}, \quad \varepsilon \equiv \frac{32.53 A_{\mathrm{t}} E}{z_{\mathrm{p}} Z_{\mathrm{t}}\left(A_{\mathrm{p}}+A_{\mathrm{t}}\right) \sqrt{z_{\mathrm{p}}^{2 / 3}+Z_{\mathrm{t}}^{2 / 3}}}(E \text { in keV, } A \text { in amu })
\end{aligned}
$$

When the target is heated isometrically, electrons move to outer shells, and are excited to high velocities.

Temperature-dependence of $n_{\mathrm{e}}(r)$ and $\left\langle v_{\mathrm{e}}(r)\right\rangle$ in an ${ }_{13} \mathrm{Al}$ target atom at constant target density $\rho=0.01 \rho_{\text {solid }}$:

If the target expands isothermally, thermal ionization

 occurs at outer atomic shells.Density-dependence of $n_{\mathrm{e}}(r)$ and $\left\langle v_{\mathrm{e}}(r)\right\rangle$ in an ${ }_{13} \mathrm{Al}$ target atom at constant target temperature $k T=4 \mathrm{eV}$:

 curve agrees well with that on established databases ${ }^{2,7}$.

Bragg curve for ${ }_{11} \mathrm{Na}$ projectiles in a solid, room-temperature ${ }_{13} \mathrm{Al}$ target:

- The absolute value S was evaluated by adjusting $S_{\text {calc }}$
with "projectile fractional effective charge"5 $z_{\mathrm{p}}{ }^{*} \equiv \sqrt{\frac{S_{\text {exp }}}{S_{\text {calc }}}}(\approx 1.15)$.
 peaks due to free electrons disappeared.

Cf. improvement from previous results presented at HIF2008:

- Previous (HIF2008): $\mathrm{S}_{\mathrm{e}}=\left.4 \pi \int_{0}^{R_{w s}}\left\{\int_{\partial E_{\text {min }}}^{\delta E_{\text {max }}} \delta E \frac{d \sigma}{d(\delta E)}(1-g) d(\delta E)\right\}\right|_{r} n_{e}(r) r^{2} d r$.
- Present: $S_{\mathrm{e}}=\left.4 \pi \int_{0}^{R_{W s}} \int_{0}^{\infty}\left\{\int_{\mathscr{E _ { \operatorname { m i n } }}}^{\delta E_{\text {ma }}} \delta E \frac{d \sigma}{d(\delta E)}(1-g) d(\delta E)\right\}\right|_{r, v_{\mathrm{e}}} f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) d v_{\mathrm{e}} r^{2} d r$.

Shape of the Bragg curve changes with target

 temperature, especially at low densities.When the target temperature increases by irradiation,

- the Bragg peak moves to the low-energy side,
- stopping power increases especially at low projectile energies,
- a satellite peak appears owing to energy transfer to free electrons.
\square Very small change for solid density target.

Shape of the Bragg curve changes also with target

 density, especially at high temperatures.When the target density is decreased,

- the Bragg peak moves towards the low-energy side,
- stopping power increases especially at low projectile energies,
- a satellite peak appears owing to energy transfer to free electrons.
\square At the room temperature, saturation of $d E / d(\rho x)$ is observed for $\rho<0.01 \rho_{\text {solid }}$.

Using the evaluated $d E / d x$ data, energy deposition profile during heating was calculated.

A demonstrative example (not so far away from the VNL future scenario ${ }^{1}$):

- Projectile: $29.2-\mathrm{MeV}^{23} \mathrm{Na}^{+}(1.27 \mathrm{MeV} / \mathrm{u}), 8 \mathrm{GW} / \mathrm{mm}^{2}$ (peak) $\times 1 \mathrm{~ns}$ \rightarrow Energy per pulse $W=8 \mathrm{~J} / \mathrm{mm}^{2}\left(1.7 \times 10^{13}\right.$ ions $\left./ \mathrm{mm}^{2}\right)$
- Target: ${ }_{13} \mathrm{Al}$-slab, $\rho=1.00-0.01 \rho_{\text {solid }}$, thickness $=9.15-915 \mu \mathrm{~m}$
- $d E / d(\rho x)$-inhomogeneity $= \pm 5 \%$, if cold solid data are used.

Density $\left(\rho / \rho_{\text {solid }}\right)$	1	0.1	0.01
Thickness $(\mu \mathrm{m})$	9.15	91.5	915

 code being coupled with the $d E / d x$ data.

- Original hydro code summary:
- "MULTI (MULTIgroup radiation transport in MULTIlayer foils)", version 7 by Rafael Ramis (MPQ, Garching)
- 1D radiation hydrodynamics
- Fully implicit Lagrangian scheme
- Time-splitting algorithm
- Tabulated EOS data (SESAME table)

Modifications made by this work:

- Laser deposition routine was canceled.
- Original ion beam deposition routine (constant $d E / d x!$) was modified to use a $d E / d x$ ($E, \rho, k T$) table ("WDM data") prepared by the present methods.
- Heat conductivity: Classical heat flux by Spitzer \rightarrow SESAME table
- FORTRAN77 source code was modified for Windows® machines \rightarrow Typical running time $\approx 10 \mathrm{~min}$ (Pentium® 4)

If a thin solid target is used, target expansion during irradiation is too much to obtain well-defined state.

Streak image of Lagrangian fluid element positions for $\rho=\rho_{\text {solid }}$ target:

- Expansion is slightly asymmetric owing to the energy deposition profile.
- Almost same hydrodynamic behaviors are observed for both calculations.

$$
\text { Beam power } P\left(\mathrm{GW} / \mathrm{mm}^{2}\right)
$$

At the end of the irradiation, expansion of the target is

 not acceptable for WDM research.- Snapshot of depth profile of parameters at $t=2.0 \mathrm{~ns}$ (end of the pulse):
- Solid lines with WDM data by this work, broken lines with cold solid data
- The averaged density decreased from $\rho_{\text {solid }}$ to $\approx 0.12 \rho_{\text {solid }}$.
- Specific energy deposition ($d E /(\rho d x$) increased due to temperature rise.
- Both surface layers were strongly heated owing to the decrease of density. \rightarrow Energy-deposition inhomogeneity $= \pm 5 \%$ (designed) $\rightarrow \pm 13 \%$

 does not reach the center of the target during irradiation.
- Streak image of Lagrangian fluid element positions for $\rho=0.1 \rho_{\text {solid }}$ target:
- Solid lines with WDM data, broken lines with cold solid data
- Sound speed $c_{\mathrm{s}}=\{\gamma(\gamma-1) U / \rho\}^{1 / 2} \approx 2 \times 10^{6} \mathrm{~cm} / \mathrm{s}$, Pulse duration $\approx \tau=1 \mathrm{~ns}$ \rightarrow Propagation distance $c_{\mathrm{s}} \tau \approx 20 \mu \mathrm{~m}$ < Target thickness $91.5 \mu \mathrm{~m}$

Longitudinal position x ($\mu \mathrm{m}$)

Beam power $P\left(\mathrm{GW} / \mathrm{mm}^{2}\right)$

Longitudinal position $x(\mu \mathrm{~m})$

Owing to the increase of $d E / d x$ with temperature,

 the exit energy decreased down to ≈ 0.- Snapshot of depth profile of parameters at $t=2.0 \mathrm{~ns}$ (end of the pulse):
- Solid lines with WDM data, broken lines with cold solid data
- Homogeneous density- and temperature profile are obtained only in the center region.
- Owing to the change of the Bragg curve shape, the energy deposition inhomogeneity increased up to $\pm 15 \%$ at the end of the pulse.

Almost no hydrodynamic motion was observed

 for the low-density thick target.- Streak image of Lagrangian fluid element positions for $\rho=0.01 \rho_{\text {solid }}$ target:
- Propagation distance of the rarefaction wave during heating $c_{\mathrm{s}} \tau \approx 20 \mu \mathrm{~m} \ll$ Target thickness $915 \mu \mathrm{~m}$

Longitudinal position x ($\mu \mathrm{m}$)

Beam power $P\left(\mathrm{GW} / \mathrm{mm}^{2}\right)$

Longitudinal position x ($\mu \mathrm{m}$) strongly affected by the change of Bragg-curve shape.

- Snapshot of depth profile of parameters at $t=2.0 \mathrm{~ns}$ (end of the pulse):
- Solid lines with WDM data, broken lines with cold solid data
- The temperature profile shows a linear decrease near the rear surface.
- At the end of the pulse the projectile stops in the target due to the increase of stopping power.

 due to the temporal change of the projectile range.

Temporal evolution of the depth profile of temperature and specific energy deposition:

- After $t=0.5 \mathrm{~ns}$, projectile stops in the target.
- The projectile range decreases with time for $t>0.5 \mathrm{~ns}$.

 simply by reducing the beam power.

Snapshot of depth profile of $k T$ and $d E / d(\rho x)$ at $t=2.0 \mathrm{~ns}$ (end of the pulse) for different beam fluxes:

- If the beam flux is reduced to $2 \mathrm{GW} / \mathrm{mm}^{2}$,
- the beam penetrates the target,
- $d E / d(\rho x)$ inhomogeneity is $\pm 26 \%$,
- the maximum temperature decreases to $k T \approx 3 \mathrm{eV}$.

To simulate the inhomogeneous porous foam target, a multilayer target structure was investigated.

Assumption for the $\rho=0.01 \rho_{\text {solid }}$ foam structure:

- Effective cell-wall thickness $=0.1 \mu \mathrm{~m}$
- Effective pore size $=10 \mu \mathrm{~m}$

Preliminary results:

- $P_{\text {peak }}=8 \mathrm{GW} / \mathrm{mm}^{2}, \tau=1 \mathrm{~ns}$

 are important for detailed design of experimental setup.
- A numerical tool was developed to calculate heavy-ion stopping power in warm dense targets:
- Energy loss of "Intermediate"-energy projectiles in targets with a given density and a given temperature can be calculated.
- The shape of the calculated Bragg curve for cold targets agrees well with those on the well-established databases.
- The $d E / d x$ code was successfully coupled to the 1D hydro code MULTI.

Low-density foam target is necessary, but the sensitivity of $d E / d(\rho x)$ to change of $k T$ and ρ may be strong!

Target (${ }_{8} \mathrm{Al}$)		Effect of hydro expansion	Change of $d E / d(\rho x)$ by heating and expansion
Density	Geom. thickness		
High (\approx solid)	Thin ($\approx 10 \mu \mathrm{~m}$)	Large ${ }^{\text {a }}$	Small ${ }_{\text {P }}$
Low (foam)	Thick ($\approx 1 \mathrm{~mm}$)	Small ${ }^{\text {P }}$	Large ${ }^{\text {: }}$

- Backup slides -

To check the validity of the present method,

 effect of solid-gas phase transition was examined.Example: Electron density- and velocity distribution in an Ar atom with sold- and gas phase:

Calculated solid／gas ratio of $d E / d(\rho x)$ is roughly

 consistent with experimental results．Example：Stopping cross section of ${ }^{4} \mathrm{He}$ projectiles in gas／solid ${ }_{18} \mathrm{Ar}$ ：
－Projectile effective charge was adjusted to fit to an established cold gas data．

Argon ice
Melting point $=83.8 \mathrm{~K}$
$\rho_{\text {solid }}=1.65 \mathrm{~g} / \mathrm{cm}^{3} @ 40 \mathrm{~K}$ due maybe to high ionization degree of the target.

Comparison of $Z_{\text {ion }}$ (\propto ionization degree) on different EOS data:

- Thomas-Fermi calculation in this work yields exactly same $Z_{i o n}$ as MPQOES ${ }^{10}$ table, which is based on QEOS ${ }^{11}$.
- MPQEOS exhibits higher $Z_{\text {ion }}$ than SESAME.

"Warm" hydrogen target is available by using an

 electromagnetically-driven shock tube at Tokyo Tech.Phase transitions:

- Dissociation of molecules
- Excitation of neutral atoms
- Ionization

By adjusting the shock speed, almost pure atomic ground-state
 target will be available:

- Atomic density
$\approx 10^{18} \mathrm{~cm}^{-3}$ ($p_{0}\left(\mathrm{H}_{2}\right)=9$ Torr)
- Temperature $=0.5 \mathrm{eV}$
- Ionization < 0.1\%
- Very small fraction of excited states

Energy of single ions after passage through the atomic target was measured by a solid-state detector.

The beam deflector has to be synchronized to the shock wave:
 the effect of dissociation of the target.

Preliminary experimental result on the stopping cross section of ${ }^{12} \mathrm{C}$ projectiles in a dissociated atomic hydrogen target:

- Solid lines: numerical results (energy transfer by binary collision, projectile charge-state determined by electron loss/capture cross sections)
 has been determined by an iterative calculation.

Relations between electric potential $\phi(r)$, electron density $n_{\mathrm{e}}(r)$ and Fermi energy E_{F} in a Thomas-Fermi model:

- $\phi(r)$ can be calculated using $n_{\mathrm{e}}(r)$ and Z by

$$
\phi(r)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Z e}{r}-\int_{r=0}^{R_{\mathrm{ws}}} \frac{e n_{\mathrm{e}}(r)}{\left|r-r^{\prime}\right|} d r^{3}\right)
$$

- $n_{\mathrm{e}}(r)$ is recursively given by

$$
n_{\mathrm{e}}(r)=\int_{0}^{\infty} f_{\mathrm{e}}(r, p) d p=n_{\mathrm{eb}}(r)+n_{\mathrm{ef}}(r) .
$$

- E_{F} can be determined by the charge neutrality:

$$
\int_{0}^{R_{\mathrm{ws}}} n_{\mathrm{e}}(r) d r^{3}=Z .
$$

- Bound-electron component:

$$
n_{\mathrm{eb}}(r)=\int_{0}^{\sqrt{2 e \phi(r) / m}} f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) d v_{\mathrm{e}} \quad\left\langle v_{\mathrm{eb}}\right\rangle(r)=\left(\int_{0}^{\sqrt{2 e \phi(r) / m}} v_{\mathrm{e}}^{2} f_{\mathrm{e}}(r, p) d v_{\mathrm{e}}\right)^{1 / 2}
$$

- Free-electron component:

$$
n_{\mathrm{ef}}(r)=\int_{\sqrt{2 e \phi(r) / m}}^{\infty} f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) d v_{\mathrm{e}} \quad\left\langle v_{\mathrm{ef}}\right\rangle(r)=\left(\int_{\sqrt{2 e \phi(r) / m}}^{\infty} v_{\mathrm{e}}^{2} f_{\mathrm{e}}\left(r, v_{\mathrm{e}}\right) d v_{\mathrm{e}}\right)^{1 / 2}
$$

Position and height of Bragg-peak can change with physical/chemical condition of the target material.

- For fixed projectile charge $q,-d E / d x$ is maximum at projectile velocity $v_{\mathrm{p}} \approx v_{\mathrm{e}}$:

Target electron velocity v_{e} (kinetic energy) changes with target conditions:

- Physical phase (solid, liquid, gas, WDM, plasma,)
- Chemical state (single atom, compound, crystal,)
- Density (pressure), temperature
\rightarrow Bragg peak position/height can change!

Electron velocity $\downarrow \uparrow$

