First Experimental Results of WDM Target Experiments

P. Ni, F. M. Bieniosek, E. Henestroza, J. Y. Jung , M. Leitner, S. M. Lidia, B. G. Logan, P. K. Roy, P .A. Seidl and W. Waldron

The Heavy Ion Fusion Science Virtual National Laboratory

Outline

- Experimental area and setup
- Optical diagnostics
- Experiment with Au, Si and Scintillator
- Summary

Experimental facility: NDCX-I

Experimental scheme

The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

Experimental area

BERKELEY LAP

5

The Heavy Ion Fusion Science Virtual National Laboratory

Intergrated light collection system

12/19/2008

Ultra-fast optical pyrometer for experiments at NDCX

Challenges and requirements:

Being able to detect at least ~1 mW of light from 400 nm to 2000 nm in a sub-ns time scale:

•Ultra fast response (sub-ns)
•Higher sensitivity (>=1500 K)
•Different, more efficient beam splitting mechanism
•No published paper

Technical issues:

Need low noise amplified photo receiver with flat gain from DC to 4GHz and big active surface.
Fiber coupling limits the efficiency
Picoseconds time scale means: Modal (temporal) dispersion in MM fiber, careful cabling, impedance match and termination of detectors

Channel #1: 750 nm+-75 nm, 76 ps rise/fall time detect? ⁻⁻⁻⁻ level ~2500 K (blackbody) Channel #2: 1000 nm+-75 nm, 72 ps rise/fall time detectable level ~1500 K (blackbody) Channel #3: 1400 nm+-75 nm, 70 ps rise/fall time detectable level ~2000 K (blackbody)

Can be upgraded up to 7 channels

Pyrometer testing in laser experiment

Experimental setup

12/19/2008

Streak camera for time resolved absolute spectroscopy

The Heavy Ion Fusion Science Virtual National Laboratory

Absolute spectral calibration

Light collection optics aligned to calibration lamp:

•Pyrometer and streak camera are calibrated absolutely with tungsten ribbon lamp •Filament calibration temperature is 2600 K, which is close to temperatures expected in our experiments

10

Calibration voltages of pyrometer:

NDCX-1 beam pulse structure

Beam current structure consists •main, flat-top 1 μs pulse (variable up to 10 μs) with flux on target ~100 mJ/cm2/μs •bunch-compressed 2-ns pulse with fluence ~10 mJ/cm2.

The compressed pulse can be delivered controllably at any time within the duration of the main pulse. The 2-ns compressed pulse width is at a comparable time scale to the hydrodynamic response of our targets

Pyrometer record: Au

DERKEL

The Heavy Ion Fusion Science Virtual National Laboratory

Streak camera record: Au

The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

Lines indentification

rrrr

DERKELET

In red shown lines which overlap with experiment
"w"-wide line
<u>We could identify all lines as Au lines, but what is their nature?</u>

The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

Temperature reconstruction

- •Performed non-linear least square optimization (Levenberg-Marquardt) with statistical weights.
- Used sensitivity of spectrometer as a weight function
- •Fitting is a "Bonus" and serves as a reference only.

•Discrepancy can be explained by many reasons: non-equilibrium, scintillation, low-level of signal, sample is not optically thick, screening hot vapor, gas-droplet mixture etc...

The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

Temperatures reconstucted from streak camera data: Au

Streak camera record: Si

Temperatures reconstucted from streak camera data:Si

The Heavy Ion Fusion Science Virtual National Laboratory

Bonus: scinitillator spectrums

<u>"Worn out" sample (>>100 shots)</u>

"Fresh" sample (<100 shots)

Wavelength

Opened questions:

- •Why intensities are so different (x100)?
- •Why temporal responses are different
- •Why "lines-like" spectrum?
- •Why IR lines show after compressed peak only?
- •Why non-linear response
- •Does the scintillator material degrade?
 - The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

GSI vs LBNL

- •Beam: Uranium (+74) e-cooled, compressed
- •Intensity: (1 4.2)x10⁹
- •Energy: 83GeV/ion
- •Focal spot: 0.150 mm 1.5 mm
- •Duration: (FWHM): 120 ns 1000 ns
- •Beam time: ~4 weeks/year

HED samples :

- •Edep~1 kJ/g (in lead)
- •temperatures up to 1.5 eV
- •kbar pressure range
- •@ solid state density, two phase vaporliquid, near creatical

Beam: K (+1) neutralized, drift compressed
Intensity:~10¹⁰
Energy: 300keV/ion
Focal spot: >=1 mm
Duration (FWHM): >=2 ns
Beam time: ~"unlimited"

<u>HED samples:</u> •Edep~0.2 kJ/g (in Al) •temperatures up to 0.3 eV (0.5 after upgrade) •@ solid state density, two phase vapor-liquid

The Heavy Ion Fusion Science Virtual National Laboratory

12/19/2008

Summary

•Commissioned pyrometer, streak camera, light collection optics, micro-positioning hardware, target chamber.

•Determined improvements and upgrades.

•Acquired initial data and made first attempts to simulate it.

•Demonstrated NDCX being a competitive machine for WDM research.

•Near term upgrades will increase temperatures.

