
Toward a physics design for NDCX-II, a next-step platform for ion
beam-driven physics studies*

A. Friedman, D. P. Grote, W. M. Sharp, LLNL
E. Henestroza, M. Leitner, B. G. Logan, W. L. Waldron, LBNL

Eleventh US-Japan Workshop on Heavy Ion Fusion and High Energy Density Physics,
December 19, 2008,  Livermore CA

*This work was performed under the auspices of the Office of Fusion
Energy Sciences, U.S. Department of Energy, by LLNL under
Contract DE-AC52-07NA27344, and by LBNL under Contract
DE-AC02-05CH11231.

Heavy Ion Fusion Science 
Virtual National Laboratory



The Heavy Ion Fusion Science Virtual National Laboratory2

LITHIUM ION BEAM BUNCH

Final Beam Energy: 3-4 MeV
Final Spot Size : ~ 1 mm diameter
Total Charge Delivered: 30 nC    (~ 2x1011 particles or Imax ~ 30 A)

Exiting beam available
for dE/dx measurement

For Warm Dense Matter studies,
the NDCX-II beam must be
accelerated to 3-4 MeV and
compressed to ~1 ns (~1 cm)

THIN TARGET
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! 

NDCX-II will enable studies of warm dense matter
and key physics for ion direct drive



30 ATA induction
cells with pulsed
1-3T solenoids

final energy
correction
induction cell

100mA, 500ns
Li+ ion injector

final focus and
target chamber
with diagnostics

neutralized drift
compression region
with plasma sources

water-filled
Blumleins

oil-filled
transmission lines

At least 40 ATA cells are available for NDCX-II

Estimated cost: $6M
(includes contingency)
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NDCX-II represents a significant upgrade over NDCX-I

 Ion (atomic 

number / mass of 

common isotope) 

Linac 

voltage 

- MV 

Ion 

energy 

- MeV 

Beam 

energy 

- J 

Target 

pulse 

- ns 

Range 

-microns 

(in ..) 

Energy 

density 
10

11
J/m

3 

 NDCX-I K
+
 (19 / 39) 0.35 0.35 0.001- 

0.003 

2-3 0.3/1.5 
(in solid/ 

20% Al)  

0.04
 

to  

0.06
 

NDCX-II Li
+1

 (3 / 7) 

or 

Na
+3

 (11 / 23) 

3.5 - 

5 

3.5 - 

15 

0.1 - 

0.28 

1-2 
(or 5 w 

hydro) 

7 - 4 
(in solid 

Al) 

 0.25 

to 

1 

 
• Baseline for WDM experiments: 1-ns Li+ pulse (~ 2x1011 ions, 30 nC, 30 A)

• For experiments relevant to ion direct drive: require a longer pulse with a
“ramped” kinetic energy, or a double pulse.
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ATA cells are in good condition and match NDCX-II needs well

Cells will be refurbished with
stronger, pulsed solenoids

solenoid

water
cooling

• They provide short, high-voltage accelerating pulses:
–Ferrite core: 1.4 x 10-3 Volt-seconds
–Blumlein: 200-250 kV for 70 ns

• At front end, longer pulses need custom voltage sources; < 100 kV for cost

Test stand
allows us to
study cells in
detail
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NDCX-II uses an accel-decel injector in which the “einzel lens”
effect provides transverse confinement

ground

+102 kV pulsed source                 +68 kV DC        -170 kV DC      solenoid
10 mA/cm2                       extraction electrode     accel electrode
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Some issues were resolved; favorable features emerged
Issues:

• An accelerating gap must be “on” while any of the beam overlaps its
extended fringe field
– To shorten the fringe, the 6.7-cm radius of the ATA beam pipe

is reduced to 4.0 cm
• Some pulses must be “shaped” to combat space charge forces

– We’ll do this via inexpensive passive circuits
• Space is limited

– 30-cell design (20 Blumleins + 10 lower-voltage sources) fits easily

Favorable features:

• Most of machine uses modular 5-cell “blocks”
• Induction cells can impart all or most of final ~8% velocity “tilt”
• Current of compressed beam varies weakly w/ target plane over ~40 cm
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A simple passive circuit can generate a wide variety of
waveforms

Waveforms generated for various component values:

charged line

induction cell & accelerating
gap impedance

ATA “compen-
sation box”
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We are well on our way toward a physics design for NDCX-II

• Accel-decel injector produces a ~ 100 keV Li+ beam with ~ 67 mA flat-top
• Induction accelerates it to 3.5 MeV at 2 A
• The 500 ns beam is compressed to ~ 1 ns in just ~ 14 m

From 1-D code:
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Physics design effort relies on PIC codes

• 1-D PIC code that follows (z,vz)
– Poisson equation with transverse falloff (“HINJ model”) for space charge

 g0 = 2 log (rpipe / rbeam0)                k⊥2 = 4 / (g0 rbeam0
2)

– A few hundred particles
– Models gaps as extended fringing field (Ed Lee’s expression)
– Flat-top initial beam with parabolic ends, with parameters from a Warp run
– “Realistic” waveforms: flat-top,“triangles” from circuit equation,

and low-voltage shaped “ears” at front end
– Interactive (Python language)

• Warp
– 3-D and axisymmetric (r,z) models; (r,z) used so far
– Electrostatic space charge and accelerating gap fields
– Time-dependent space-charge-limited emission
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Principle 1: Shorten Beam First (“non-neutral drift compression”)

• Compress longitudinally before main acceleration

• Want < 70 ns transit time through gap (with fringe field) as soon as
possible

==> can then use 200-kV pulses from ATA Blumleins

• Compress carefully to minimize effects of space charge

• Seek to achieve velocity “tilt” vz(z) ~ linear in z “right away”
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Principle 2: Let It Bounce

• Rapid inward motion in beam frame is required to get below 70 ns

• Space charge ultimately inhibits this compression

• However, so short a beam is not sustainable
– Fields to control it can’t be “shaped” on that timescale
– The beam “bounces” and starts to lengthen

• Fortunately, the beam still takes < 70 ns because it is now moving faster

• We allow it to lengthen while applying:
– additional acceleration via flat pulses
– confinement via ramped (“triangular”) pulses

• The final few gaps apply the “exit tilt” needed for Neutralized Drift
Compression
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Pulse length (m) vs. z of center-of-mass
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Pulse duration vs. z
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Voltage waveforms for all gaps
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A series of snapshots shows how the (Ek,z) phase space and
the line charge density evolve

λ
(µC/m)

Ek
(MeV)

entering linac mid-compression peak
compression

z (m)

expanding exiting at focus
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Video: line charge density and kinetic energy profiles vs. time
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We use the Warp code to simulate the NDCX-II beam in (r,z)
500 ns                            1500 ns                              2500 ns

3500 ns                            3835 ns                            3855 ns

Transverse emittance growth (phase space dilution) is minimal
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Preliminary Warp (r,z) beam-on-target is encouraging; transverse
dynamics and focusing optics design is still at an early stage

Longitudinally: the goal is achieved;
most of the beam’s 0.1 J passes
through the target plane in ~1.2 ns

Transversely: peak fluence of 17 J/cm2

is less than the 30 J/cm2 desired;
78% of beam falls within a 1 mm spot



1-D code (top) & Warp (bottom) results agree, with differences
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We look forward to a novel and flexible research platform

• The design concept is compact and attractive
– It applies rapid bunch compression and acceleration
– It makes maximal use of ATA induction modules and pulsed power
– Beam emittance is well preserved in simulations

… but considerable work remains before this is a true “physics design”

• NDCX-II will be able to deliver far greater beam energy and peak power for
Warm Dense Matter physics than NDCX-I

• We will soon begin to develop an NDCX-II acceleration schedule that
delivers a ramped-energy beam, for energy coupling and hydrodynamics
studies relevant to direct-drive Heavy Ion Fusion
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Extras
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Progress has been encouraging; much remains to be done
• Proper accounting for initial beam-end energy variation due to space charge

(the 1-D run shown was initiated with a fully-formed uniform-energy beam)
– Other 1-D runs used a “model” initial energy variation and an entry “ear” cell;

they produced compressed beams similar to the one shown
– However, that variation was not realistic; a Warp run using the 1-D-derived

waveforms yielded inferior compression
• Better understanding of beam-end wrap-around (causes and consequences)
• A prescription for setting solenoid strengths to yield a well-matched beam
• Optimized final focusing, accounting for dependence of the focal spot upon velocity

tilt, focusing angle, and chromatic aberration
• Assessment of time-dependent focusing to correct for chromatic effects
• Development of plasma injection & control for neutralized compression & focusing

(schemes other than the existing FCAPS may prove superior)
• Establishment of tolerances for waveforms and alignment

Major goals remain:
– a self-consistent source-through-target design, including

assessment of tolerances etc., for WDM studies
– a prescription for modifications offering multiple pulses, ramped

energy, and/or greater total energy, for ion direct drive studies
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These snapshots show how the (vz,z) phase space and the line
charge density evolve (note the auto-scaling)
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at focus

13.78              13.80 t = 3118 ns
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Ohmʼs law
3x1013 plasma
3x1012 plasma

Current
and radius
z = 197
cm

Sub ns
pulse

Simulations of NDCX-II neutralized compression and focus
suggest that a plasma of density ~ 1014 cm-3 is desirable
• Idealized beam, uniform plasma, so far:

– Li+, 2.8 MeV, 1.67 eV temperature
– 2-cm -5 or -6.7 mrad convergence
– uniform current density; ε = 24 mm-mrad
– 0.7-A with parabolic 50-ns profile
– applying ideal tilt for 30 ns of beam

•½ mm 1-ns beam has 2x1013 cm-3 density

Tilt gap

plasma

5-kV
e-trap

 (LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code starting to be used)
Radius
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We simulate injection from Cathodic-Arc Plasma sources

1.2 ns                                                         4.5 ns

• This run corresponds to an NDCX-I configuration with 4 sources
• It was made by Dave Grote using Warp in 3-D mode
• LSP has been used extensively for such studies


