

For Warm Dense Matter studies, the NDCX-II beam must be accelerated to 3-4 MeV and compressed to ~1 ns (~1 cm)

THIN TARGET

LITHIUM ION BEAM BUNCH

Final Beam Energy: Final Spot Size :

3-4 MeV ~ 1 mm diameter Total Charge Delivered: **30 nC** (~ $2x10^{11}$ particles or $I_{max} \sim 30$ A)

Exiting beam available for dE/dx measurement

At least 40 ATA cells are available for NDCX-II

NDCX-II represents a significant upgrade over NDCX-I

	Ion (atomic number / mass of common isotope)	Linac voltage - MV	Ion energy - MeV	Beam energy - J	Target pulse - ns	Range -microns (in)	Energy density 10 ¹¹ J/m ³
NDCX-I	K ⁺ (19 / 39)	0.35	0.35	0.001- 0.003	2-3	0.3/1.5 (in solid/ 20% Al)	0.04 to 0.06
NDCX-II	Li ⁺¹ (3 / 7) or Na ⁺³ (11 / 23)	3.5 - 5	3.5 - 15	0.1 - 0.28	1-2 (or 5 w hydro)	7 - 4 (in solid Al)	0.25 to 1

- Baseline for WDM experiments: 1-ns Li⁺ pulse (~ 2x10¹¹ ions, 30 nC, 30 A)
- For experiments relevant to ion direct drive: require a longer pulse with a "ramped" kinetic energy, or a double pulse.

ATA cells are in good condition and match NDCX-II needs well

- They provide short, high-voltage accelerating pulses:
 - -Ferrite core: 1.4 x 10⁻³ Volt-seconds
 - -Blumlein: 200-250 kV for 70 ns
- At front end, longer pulses need custom voltage sources; < 100 kV for cost

NDCX-II uses an accel-decel injector in which the "einzel lens" effect provides transverse confinement

Some issues were resolved; favorable features emerged

Issues:

- An accelerating gap must be "on" while any of the beam overlaps its extended fringe field
 - To shorten the fringe, the 6.7-cm radius of the ATA beam pipe is reduced to 4.0 cm
- Some pulses must be "shaped" to combat space charge forces
 - We'll do this via inexpensive passive circuits
- Space is limited
 - 30-cell design (20 Blumleins + 10 lower-voltage sources) fits easily

Favorable features:

- Most of machine uses modular 5-cell "blocks"
- Induction cells can impart all or most of final ~8% velocity "tilt"
- Current of compressed beam varies weakly w/ target plane over ~40 cm

A simple passive circuit can generate a wide variety of waveforms

Waveforms generated for various component values:

We are well on our way toward a physics design for NDCX-II

- Accel-decel injector produces a ~ 100 keV Li⁺ beam with ~ 67 mA flat-top
- Induction accelerates it to 3.5 MeV at 2 A •
- The 500 ns beam is compressed to \sim 1 ns in just \sim 14 m ٠

From 1-D code:

Physics design effort relies on PIC codes

- 1-D PIC code that follows (z,v_z)
 - Poisson equation with transverse falloff ("HINJ model") for space charge

 $g_0 = 2 \log (r_{pipe} / r_{beam0})$ $k_{\perp}^2 = 4 / (g_0 r_{beam0}^2)$

- A few hundred particles
- Models gaps as extended fringing field (Ed Lee's expression)
- Flat-top initial beam with parabolic ends, with parameters from a Warp run
- "Realistic" waveforms: flat-top, "triangles" from circuit equation, and low-voltage shaped "ears" at front end
- Interactive (Python language)
- Warp
 - 3-D and axisymmetric (r,z) models; (r,z) used so far
 - Electrostatic space charge and accelerating gap fields
 - Time-dependent space-charge-limited emission

Principle 1: Shorten Beam First ("non-neutral drift compression")

- Compress longitudinally before main acceleration
- Want < 70 ns transit time through gap (with fringe field) as soon as possible

==> can then use 200-kV pulses from ATA Blumleins

- Compress carefully to minimize effects of space charge
- Seek to achieve velocity "tilt" $v_z(z) \sim \text{linear in } z$ "right away"

Principle 2: Let It Bounce

- Rapid inward motion in beam frame is required to get below 70 ns
- Space charge ultimately inhibits this compression
- However, so short a beam is not sustainable
 - Fields to control it can't be "shaped" on that timescale
 - The beam "bounces" and starts to lengthen
- Fortunately, the beam still takes < 70 ns because it is now moving faster
- We allow it to lengthen while applying:
 - additional acceleration via flat pulses
 - confinement via ramped ("triangular") pulses
- The final few gaps apply the "exit tilt" needed for Neutralized Drift Compression

Pulse duration vs. z

Voltage waveforms for all gaps

The Heavy Ion Fusion Science Virtual National Laboratory

A series of snapshots shows how the (E_k,z) phase space and the line charge density evolve

Video: line charge density and kinetic energy profiles vs. time

We use the Warp code to simulate the NDCX-II beam in (r,z)

Transverse emittance growth (phase space dilution) is minimal

Preliminary Warp (r,z) beam-on-target is encouraging; transverse dynamics and focusing optics design is still at an early stage

Longitudinally: the goal is achieved; most of the beam's 0.1 J passes through the target plane in \sim 1.2 ns

Transversely: peak fluence of 17 J/cm² is less than the 30 J/cm² desired; 78% of beam falls within a 1 mm spot

1-D code (top) & Warp (bottom) results agree, with differences

We look forward to a novel and flexible research platform

- The design concept is compact and attractive
 - It applies rapid bunch compression and acceleration
 - It makes maximal use of ATA induction modules and pulsed power
 - Beam emittance is well preserved in simulations
- ... but considerable work remains before this is a true "physics design"
- NDCX-II will be able to deliver far greater beam energy and peak power for Warm Dense Matter physics than NDCX-I
- We will soon begin to develop an NDCX-II acceleration schedule that delivers a ramped-energy beam, for energy coupling and hydrodynamics studies relevant to direct-drive Heavy Ion Fusion

Progress has been encouraging; much remains to be done

- Proper accounting for initial beam-end energy variation due to space charge (the 1-D run shown was initiated with a fully-formed uniform-energy beam)
 - Other 1-D runs used a "model" initial energy variation and an entry "ear" cell; they produced compressed beams similar to the one shown
 - However, that variation was not realistic; a Warp run using the 1-D-derived waveforms yielded inferior compression
- Better understanding of beam-end wrap-around (causes and consequences)
- A prescription for setting solenoid strengths to yield a well-matched beam
- Optimized final focusing, accounting for dependence of the focal spot upon velocity tilt, focusing angle, and chromatic aberration
- Assessment of time-dependent focusing to correct for chromatic effects
- Development of plasma injection & control for neutralized compression & focusing (schemes other than the existing FCAPS may prove superior)
- Establishment of tolerances for waveforms and alignment

- a self-consistent source-through-target design, including assessment of tolerances etc., for WDM studies
- a prescription for modifications offering multiple pulses, ramped energy, and/or greater total energy, for ion direct drive studies

Major goals remain:

These snapshots show how the (v_z, z) phase space and the line charge density evolve (note the auto-scaling)

Simulations of NDCX-II neutralized compression and focus suggest that a plasma of density $\sim 10^{14}$ cm⁻³ is desirable

(LSP runs by D. Welch; others by A. Sefkow, M. Dorf; Warp code starting to be used)

The Heavy Ion Fusion Science Virtual National Laboratory

We simulate injection from Cathodic-Arc Plasma sources

1.2 ns

4.5 ns

0.05

0.10

Ζ

0.15

Number density (1/cm**3)

- This run corresponds to an NDCX-I configuration with 4 sources
- It was made by Dave Grote using Warp in 3-D mode
- · LSP has been used extensively for such studies

0.20

10¹²

1011

10¹⁰

10⁹

10⁸

107

106