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For Warm Dense Matter studies,
the NDCX-Il beam must be
accelerated to 3-4 MeV and
compressed to ~1 ns (~1 cm)

/

LITHIUM ION BEAM BUNCH

Exiting beam available
for dE/dx measurement

Final Beam Energy: 3-4 MeV
Final Spot Size : ~ 1 mm diameter
Total Charge Delivered: 30 nC (~ 2x10!! particles or I.., ~ 30 A)




NDCX-Il will enable studies of warm dense matter
and key physics for ion direct drive

to-date anticipated

NDCX NDCX-II

lon | K*' (A=39)| Li*' or Na*3 (A=7 or 23)
lon energy | 400 keV 3-16 MeV
Focal radius | 1.5-3 mm| 0.5 mm

Pulse duration | 2-4 ns 1ns
Compression ratio | 60X 500X
Peak current | ~2 A ~30A
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At least 40 ATA cells are available for NDCX-II

100mA, 500ns
Li* ion injector

oil-filled
transmission lines

30 ATA induction
cells with pulsed

1-3T solenoids

Estimated cost: $6M
(includes contingency)

final energy
correction

induction cell

neutralized drift
compression region
with plasma sources

water-filled
Blumleins

final focus and
target chamber
with diagnostics




NDCX-II represents a significant upgrade over NDCX-|

Ton (atomic Linac Ton Beam | Target | Range | Energy
number / mass of | voltage | energy | energy | pulse | -microns | density
common isotope) | - MV | - MeV| -] - ns (in..) | 10"J/m’
NDCX-I K" (19/39) 0.35 0.35 [ 0.001-] 2-3 0.3/1.5 0.04
0.003 (in solid/ to
20% Al) 0.06
NDCX-II Li" (3/7) 3.5-135-]01-] 1-2 7 -4 0.25
or 5 15 0.28 | (or 5 w| (in solid to
Na™ (11 /23) hydro)| Al 1

« Baseline for WDM experiments: 1-ns Li* pulse (~ 2x10"" ions, 30 nC, 30 A)

» For experiments relevant to ion direct drive: require a longer pulse with a

“ramped” kinetic energy, or a double pulse.
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ATA cells are in good condition and match NDCX-Il needs well

e They provide short, high-voltage accelerating pulses:
—Ferrite core: 1.4 x 10-3 Volt-seconds
—Blumlein: 200-250 kV for 70 ns

At front end, longer pulses need custom voltage sources; < 100 kV for cost

solenoid

water
cooling

| T ‘gl Cells will be refurbished with
| Teststand & ®WEASS | stronger, pulsed solenoids
allows us to =y B SR

study cells in

detail 7 e u




NDCX-Il uses an accel-decel injector in which the “einzel lens”
effect provides transverse confinement

+102 KV pulsed source +68 kV DC -1770 kV DC  solenoid
10 mA/cm? extraction electrode accel electrode
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Some issues were resolved; favorable features emerged

Issues:

* An accelerating gap must be “on” while any of the beam overlaps its
extended fringe field

— To shorten the fringe, the 6.7-cm radius of the ATA beam pipe
is reduced to 4.0 cm

« Some pulses must be “shaped” to combat space charge forces
— We'll do this via inexpensive passive circuits
» Space is limited
— 30-cell design (20 Blumleins + 10 lower-voltage sources) fits easily

Favorable features:

* Most of machine uses modular 5-cell “blocks”
* Induction cells can impart all or most of final ~8% velocity “tilt”

« Current of compressed beam varies weakly w/ target plane over ~40 cm
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A simple passive circuit can generate a wide variety of
waveforms

R1

charged%line

=1

ATA “compe
sation box”

=3
§R3 §L2

induction cell & accelerating

gap impedance

Waveforms generated for various component values:
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We are well on our way toward a physics design for NDCX-|

e Accel-decel injector produces a ~ 100 keV Li* beam with ~ 67 mA flat-top
e |Induction accelerates itto 3.5 MeV at2 A
e The 500 ns beam is compressed to ~ 1 nsin just~ 14 m

From 1-D code:
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Physics design effort relies on PIC codes

* 1-D PIC code that follows (z,v,)
— Poisson equation with transverse falloff (“HINJ model”) for space charge

9o = 2 log (rpipe / Theamo) K,?=41(9p Mbeamo)
— A few hundred particles
— Models gaps as extended fringing field (Ed Lee’s expression)
— Flat-top initial beam with parabolic ends, with parameters from a Warp run

— “Realistic” waveforms: flat-top,“triangles” from circuit equation,
and low-voltage shaped “ears” at front end

— Interactive (Python language)
« Warp
— 3-D and axisymmetric (r,z) models; (r,z) used so far
— Electrostatic space charge and accelerating gap fields
— Time-dependent space-charge-limited emission

- " .
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Principle 1: Shorten Beam First (“non-neutral drift compression”)

Compress longitudinally before main acceleration

Want < 70 ns transit time through gap (with fringe field) as soon as
possible

==> can then use 200-kV pulses from ATA Blumleins

Compress carefully to minimize effects of space charge

Seek to achieve velocity “tilt" v,(z) ~ linear in z “right away”

" .
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Principle 2: Let It Bounce

» Rapid inward motion in beam frame is required to get below 70 ns
« Space charge ultimately inhibits this compression

 However, so short a beam is not sustainable
— Fields to control it can’t be “shaped” on that timescale
— The beam “bounces” and starts to lengthen

» Fortunately, the beam still takes < 70 ns because it is now moving faster

* We allow it to lengthen while applying:
— additional acceleration via flat pulses
— confinement via ramped (“triangular”) pulses

* The final few gaps apply the “exit tilt” needed for Neutralized Drift
Compression
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Pulse length (m) vs. z of center-of-mass
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Pulse duration vs. z

— time for the entire beam to cross a
plane at fixed z

+ time for a single particle at mean
energy to cross the finite-length gap

x time for the entire beam to cross the
finite-length gap
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Voltage waveforms for all gaps
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A series of snapshots shows how the (E,,z) phase space and

the line charge density evolve
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Video: line charge density and kinetic energy profiles vs. time

line charge density (uG/m) & Ex (MeV) vs z
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We use the Warp code to simulate the NDCX-Il beam in (r,z)

500 ns
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Preliminary Warp (r,z) beam-on-target is encouraging; transverse
dynamics and focusing optics design is still at an early stage

Longitudinally: the goal is achieved; | Transversely: peak fluence of 17 J/cm?
most of the beam’s 0.1 J passes is less than the 30 J/cm? desired;
through the target plane in ~1.2 ns /8% of beam falls within a 1 mm spot
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1-D code (top) & Warp (bottom) results agree, with differences

.. 1680 ns 2580 ns_ 2880 ns.

9 ! 11 I I U2 v 29 30

wey L S

02 L L . 025

N
LI S —

>o

r0.2

C/ m )

(=]

pury
T

21 I A 1 I R A

oo ool WS Ll e 0ol

y | i Ly 1 11l L L ! |
3.5 8.5 9.0 11.0 11.5

T T T Tr T T T ¥ T T T T T T T AT (L]
21 .22 23 0] 29 .30

04 0.4 i i } } ; 5 1 04

0.3 |

0.3r | . 1 1 ! | 1 031

oz o o L 02

0.1 0.1 f

(@/m)é

0.0 b——! 0.0 ool

3.5

I ZI(Fn) 8.5 l - - B.IO I :I 11I‘0 S I 1'|I.5 I



We look forward to a novel and flexible research platform

* The design concept is compact and attractive
— It applies rapid bunch compression and acceleration
— It makes maximal use of ATA induction modules and pulsed power
— Beam emittance is well preserved in simulations

... but considerable work remains before this is a true “physics design”

« NDCX-II will be able to deliver far greater beam energy and peak power for
Warm Dense Matter physics than NDCX-I

* We will soon begin to develop an NDCX-II acceleration schedule that
delivers a ramped-energy beam, for energy coupling and hydrodynamics
studies relevant to direct-drive Heavy lon Fusion
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Progress has been encouraging; much remains to be done

Proper accounting for initial beam-end energy variation due to space charge
(the 1-D run shown was initiated with a fully-formed uniform-energy beam)

— Other 1-D runs used a “model” initial energy variation and an entry “ear” cell;
they produced compressed beams similar to the one shown

— However, that variation was not realistic; a Warp run using the 1-D-derived
waveforms yielded inferior compression

« Better understanding of beam-end wrap-around (causes and consequences)
« A prescription for setting solenoid strengths to yield a well-matched beam

« Optimized final focusing, accounting for dependence of the focal spot upon velocity
tilt, focusing angle, and chromatic aberration

« Assessment of time-dependent focusing to correct for chromatic effects

« Development of plasma injection & control for neutralized compression & focusing
(schemes other than the existing FCAPS may prove superior)

« Establishment of tolerances for waveforms and alignment

Major goals remain:

— a self-consistent source-through-target design, including
assessment of tolerances etc., for WDM studies

— a prescription for modifications offering multiple pulses, ramped
energy, and/or greater total energy, for ion direct drive studies

24




These snapshots show how the (v,,z) phase space and the line
charge density evolve (note the auto-scaling)
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Simulations of NDCX-II neutralized compression and focus
suggest that a plasma of density ~ 10" cm-3 is desirable

- ldealized beam, uniform plasma, so far: e Tilt g
. 14.00 | eam den5|ty 50 ns
— Li*, 2.8 MeV, 1.67 eV temperature I s
— 2-cm -5 or -6.7 mrad convergence B 5'k:V
— uniform current density; € = 24 mm-mrad = etrap
. . . i miscrm
— 0.7-A with parabolic 50-ns profile plasma-
— applying ideal tilt for 30 ns of beam
%2 mm 1-ns beam has 2x10'3 cm3 density
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We simulate injection from Cathodic-Arc Plasma sources

1.2 ns

Number density (1/cm**3)
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4.5 ns

Number density (1/cm**3)
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* This run corresponds to an NDCX-I configuration with 4 sources
* It was made by Dave Grote using Warp in 3-D mode
- LSP has been used extensively for such studies
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