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NDCX-II will enable studies of warm dense matter and key

physics for ion direct drive

LITHIUM ION BEAM BUNCH (ultimate goals)

Final beam energy: >3 MeV

Final spot diameter : ~1 mm

Final bunch length : ~1cmor~1ns
Total charge delivered: ~30nC

30 J/cm? isochoric heating
- aluminum temperature ~ 1 eV

" TARGET

= um foil or foam

Exiting beam available
for measurement




“Neutralized Drift Compression” produces a short pulse of ions

« The process is analogous to “chirped pulse amplification” in lasers

* A head-to-tail velocity gradient (“tilt") is imparted to the beam by one or
more induction cells

 This causes the beam to shorten as it moves down the beamline:

Vv Vv

z z

=

Z (beam frame) Z (beam frame)

« Space charge would inhibit this compression, so the beam is directed
through a plasma which affords neutralization

« Simulations and theory (Voss Scientific, PPPL) showed that the plasma
density must exceed the beam density for this to work well
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NDCX-I| at LBNL routinely achieves current amplification > 50x

InJector Beam _transport
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Target Chamber.
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NDCX-I

ATA induction
cells with pulsed
1-3T solenoids
Length ~15 m
Avg. 0.25 MV/m
Peak 0.75 MV/m

oil-filled
transmission lines

water-filled
Blumlein
voltage
sources
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neutralized drift
compression region
with plasma sources

final focus and
target chamber
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LLNL has given the HIFS-VNL 48 induction cells from the ATA

e They provide short, high-voltage accelerating pulses
—Ferrite core: 1.4 x 10-3 Volt-seconds
—Blumlein: 200-250 kV; 70 ns FWHM
At front end, longer pulses need custom voltage sources; < 100 kV for cost
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1-D PIC code ASP (“Acceleration Schedule Program®)

9

Follows (z,v,) phase space using a few hundred particles (“slices™)
Space-charge field via Poisson equation with finite-radius correction term

V2 = d2/dz2-k2¢ = - ple,

k =4/ (90 Mbeam ) 9o = 2 |Og (rwall / rbeam)

Acceleration gaps with longitudinally-extended fringing field
— ldealized waveforms
— Circuit models including passive elements in “comp boxes
— Measured waveforms
Centroid tracking for studying misalignment effects, steering
Multiple optimization loops:
— Waveforms and timings
— Dipole strengths (for steering)
* Interactive (Python language with Fortran for intensive parts)

N [
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Principle 1: Shorten Beam First (“non-neutral drift compression”)

Equalize beam energy after injection -- then --

Compress longitudinally before main acceleration

Want < 70 ns transit time through gap (with fringe field) as soon as
possible

==> can then use 200-kV pulses from ATA Blumleins

Compress carefully to minimize effects of space charge

Seek to achieve large velocity “tilt” v,(z) ~ linear in z “right away”
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Principle 2: Let It Bounce

* Rapid inward motion in beam frame is required to get below 70 ns
« Space charge ultimately inhibits this compression

« However, so short a beam is not sustainable
— Fields to control it can’t be “shaped” on that timescale
— The beam “bounces” and starts to lengthen

» Fortunately, the beam still takes < 70 ns because it is now moving faster

« We allow it to lengthen while applying:
— additional acceleration via flat pulses
— confinement via ramped (“triangular”) pulses

» The final few gaps apply the “exit tilt"” needed for neutralized drift
compression

- " .
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Pulse length vs z: the “bounce” is evident
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Pulse duration vs z

3 - time for entire beam to cross
+ a plane at fixed z
i + time for a single particle at
‘v 400} mean energy to cross finite-
£ length gap
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Voltage waveforms for all gaps

“flat-top” (here

time (us)
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A series of snapshots from ASP shows the evolution of the
longitudinal phase space (kinetic energy vs z) and current

entering compressing maximum compression
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Design of injector for 1 mA/cm? Li* emission uses Warp in (r,z)

Using Warp’s “gun” mode

extractor
~150 kV

emitter
~165 kV
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current (A)

0.2

0.0
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lal beam )
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ASP & Warp results agree (when care is taken w/
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Video: Warp (r,z) simulation of NDCX-1l beam
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Video: Warp 3-D simulation of NDCX-Il beam
(no misalignments)




Video: Warp 3D simulation of NDCX-II, including random
offsets of solenoid ends by up to 1 mm (0.5 mm is nominal)




ASP employs a tuning algorithm (as in ETA-II, DARHT)T to
adjust “steering” dipoles so as to minimize a penalty function

Trajectories of head, mid, tail particles, and corkscrew amplitude, for a typical ASP run.
Random offsets of solenoid ends up to 1 mm were assumed; the effect is linear.
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Key technical issues are being addressed

« Li* ion source current density
— We currently assume only 1 mA/cm?

« Solenoid misalignment effects
— Steering reduces corkscrew but requires beam position measurement

— If capacitive or magnetic BPM's prove too noisy, we’ll use scintillators
or apertures

* Require “real” acceleration waveforms
— A good “ramp” has been tested and folded into ASP runs
— We're developing shaping circuits for “flatter flat-tops™

* Pulsed solenoid effects
— Volt-seconds of ferrite cores are reduced by return flux of solenoids
— Eddy currents (mainly in end plates) dissipate energy, induce noise
— We'll use flux-channeling inserts and/or windings, & thinner end plates

" .
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We look forward to a novel and flexible research platform

« NDCX-Il will be a unique ion-driven user facility for warm
dense matter and IFE target physics studies.

* The machine will also allow beam dynamics experiments
relevant to high-current fusion drivers.

* The baseline physics design makes efficient use of the ATA
components through rapid beam compression and
acceleration.
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