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Recent innovations, together with NIF ignition, would support on of X | Senables hiah
—a new vision for heavy ion fusion: Construction of NDCX-Il began July 2009->enables higher energy
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(2-D RT calculations in progress) e _ . ensity, pressure
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: . ablator ablator  also deposit more
Driver energy (MJ) 0.32 0.36 0.44 1.3 e .

: ® : . * 7 energy into peaks

Peak d TW 175 195 205 320 . — . .

eak drive power (TY) Max shell V€10C1ty 3.51710 Cm/ 5 lon versus laser beams-for the same PdV work at the ablation front:
Yield (MJ) / Gain 2471 77 21.6/60 20.8 /47 20.0/15 ) ) ] ) ) o
S 0.97/0.10 0917010 |0.88/.00 0167002 - ion beam energy deposited closer to ablation front (higher _couplmg efficiency)
In-flight aspect ratio | 25 27 25 32 = pressure gradients and Atwood numbers may be smaller with DT ablators
Convergence ratio 35 30 31 34
In-flight adiabat o 1.9 2.4 3.2 1.4
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(SUB-MJ DRIVE FUSION AND FUSION-FISSION HYBRIDS)*

NIF ignition should renew interest not only in laser IFE, but
also in Heavy lon Fusion, for reasons that still apply today:

= MJ-beam accelerators have separately exhibited intrinsic

For R&D planning, its time to re-examine issues and needed facilities for all
driver, target and chamber options. (Example tables below may be incomplete).

Example HIF driver options, some associated key issues & R&D facilities

Heavy ion fusion direct drive might
lead to a much smaller hybrid

efficiencies, pulse-rates, average power levels, and durability
required for IFE.
= Thick-liquid protected target chambers are designed to have 30

year plant lifetimes.

= Focusing magnets for ion beams avoid direct line-of-sight damage
from target debris, n and g radiation.

= Heavy ion power plant studies have shown attractive economics

and environmental characteristics (only class-C low level waste).
[Yu et al., Fusion Sci. Tech. 44, 2 (2003) 329]

Copies of these IFE reviews available upon request
1979 Foster Committee

10— T T —o==""
HIF Driver |Multi-beam LIA- | Multi-beam LIA | Multi-beam LIA- | Modular set Induction "'S' T
Options |magnetic magnetic electric single-beam LIA- | Synchrotron, 1 Pl hma , LIFE
quadrupole solenoids quadrupoles solenoids RF linacs G"'F[E“_} l;' : iz d Lol
Gadvl Ed] usion
Key Issues | SC magnet cost | SC magnet cost |Limited A, & Efficiency>0.2 Viable only for o :' hybrid
and multi-beam |& multi- longitudinal requires high 100 GeV — - ’
E-cloud issue solenoid field compression A,>100 uC/m >2 |targets? # of
asymmetries under accel. kA/beam! beams > 17
10
R&D Modified HCX + |Modified HCX + |Modified HCX+ |NDCX-II KEK-AIA? 0 02 04 06 08 1 12 14 16 18 2
Facilities |10 kJ IRE scale 10 kJ IRE scale 10 kJ IRE scale experiments using | 10 kJ scale Ed

-up to non- | linac for direct drive
ignition scale | €Xp. or MJ-scale for
implosions | Indirect drive

linac for direct drive | linac for direct
exp. or MJ scale for | drive or MJ scale

Indirect drive for indirect drive for dire

higher g/Aions + 10 | accelerator tests,
kJ IRE scale linac then MJ scale for

ct drive implosion test

Fusion gain G for laser
hohlraums (like NIF) and for
generic advanced IFE gain G,

1983 Jason Report (JSR82-302)
1986 National Academies of Sciences Report

Example HIF target options, some associated

Key Issues & R&D facilities

(such as heavy ion direct drive

1990 Fusion Policy Advisory Committee report (Stever Panel)
1993 Fusion Energy Advisory Committee (Davidson Panel)
1996 FESAC report (Sheffield Panel)

HIF Indirect-Drive Hohlraum, | Direct-drive, ablative,

multi- polar angle ring
Illumination

Direct/Indirect
“Cannonballs”

Direct-drive Cylindrical
(ITEP-TWAC)-Fast

(Spherical hohlraums) | lgnition

versus driver energy Ed (MJ).
->Small HIF hybrid example
is given below

Applications of heavy ion direct drive for fusion and
fusion-fission hybrids requires R&D on targets, chambers,
and accelerator drivers that can work together. .

Target cylindrical, two sided
Options illumination
Key Issues | Low ~<2% coupling
efficiency->7 to 8 MJ
(RPD)

High contrast pulse

beams need

shape, beam balance, #

test

Case losses, minimum | Cost of 100 GeV, 10 MJ
Tr for radiation coupling | beams, beam spot

rotation

Fusion yield = 20 x 0.25 MJ= 5 MJ.

N4Caav=2, @ ng=0.1
Low pulse repetition rate = 2 Hz

(3) lllumination Geometry:
Jakob Runge, (Fulbright summer student 2008 in LBNL),

R&D 1GeV,>1MJ, >60

facilities | beams,~ 0.5 mm spots for

(non-ignition | hohlraum implosion test | cryo implosion test

HIDDIX (IRE~ 100 MeV,
kJ scale, 60+ ? beams for

10 [~>1GeV,>1MJ,

spot | TWAC, KEK-AIA? Beam

size <1 mm, > 607? requirements for
beams for implosion test | implosion test?

Average fusion power =10 MW
Fission power = 80 MW
Pedriver= 5 Mwe

Panet = 93 MW,

Perkins,
\ _J/et. al.
‘ HIF08
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0.5 mm foam Kaw
IFSA

1.O0Dhwn .

3.97 luun ™
3503 mans Al

i t]ll.'11|||:'r~
T e ' Al
2 '.-".‘.IHJIII!I‘-_

2800mum s, S
Wond

# =
Jo0ndi g’
o " 5
N L (1]

s DRU S o seen

ata, et.al. (Sharkov, et.al. HIF 02
07) and IFSA 07)

AL dgfemy?
S 208piemy’

Example HIF chamber options, some associated key issues & R&D facilities

Pulsed radial liquid jets,
polar geometry
(TOFE 08)

Thin liquid metal
surface- protected
chambers (ITEP)

Solid wall, gas
protected
Dry wall (LIFE)

Pumping power, precision
jet control for polar beam
ring access

Recovery rate for re-

wetting walls. Neutron | hot gas, solid wall

damage to structures.

developed a Mathematica model to explore the question: scale)
what minimum number of polar angles of annular ring Catanan etat o
arrays with beams using hollow rotated beam spots are
be needed for less than 1% non-uniformity of deposition?
Rotating beam profile  1mm 16 each best for two-
Beam Array width sided beamline layouts
Just fou‘r“_annu.lua rings of
b €15 each;; 60 total)
ot +37.3and £79.3° o
{ oot projeciions give s only, HIF Thick liquid chambers-
Target radius :?lzxrlnrzl;.nmodfe\él.?g/:))n from - i Chamber OSCI”atlng Jets
2mm neitence o one (with 21% spilled intensity). g{;g‘;:‘:%; 1‘;‘]‘13} ﬁ-m - Options (HYLIFE)
40 beams total give less ~ for rotated beam :
Intensity Profile than 1.4% and 32 beams glr‘i"‘,'e‘iln;zlg‘l,‘ylfi‘o‘:;3::(1)3;1” Key Issues Pumping power,
- 0.7% non-uniformity {,?/;[?rll it:;ﬁle\;erﬁ]bgofgdzii/(t)he acce[fted for publication,, OSCiIIating nozzles,
T VD — i e e VA spill can be reduced, but Physics of Plasmas, 2009) pulse rates < 6 HZ
unwanted radial incidence .
increases (RT instabilities). R&D facilities |1 M $ scale exp.
: B oo widihs are (non-ignition | followed by 10 M$
| scale) scale hydro-equiv
Induction linear accelerator design for heavy ion direct water simulator tests

1 M $ scale exp. followed
by 10 M$ scale hydro-
equiv water simulator
tests

1 M $ scale exp. followed | Collaborative @79 deg

by 10 M$ scale hydro-

equiv Hg or NaK metal | LLNL Mini-Chamber

film recovery test

experiments in planned

facility for LIFE

drive w/ four-ring polar angle target illumination: future
studies can consider modular, single beam driver option if
target gains > 100, otherwise, we can consider the option
to use multiple-beam induction linacs (more efficient with
shared cores)-both options are depicted below:

Top down plan view of two types of beam layout options:
->Multiple-beam linac option shown on the left half of beams
->Modular single beam driver system, shown on the right half

HIFTF Polar direct drive chamber Not shown: 24 beams, 3m, 1A,

(Polar axis out-of-paper) Dipole bend magnets 1MeV, Na*! for pre-ionization.
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Shared cores reduce total mass
—lower losses=> more efficient
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Added vacuum drift lines (length TBD) :
..route beams to neutralized drift lines. )

i [ TY N X1 ]

Top-down plan view of one annular beam
array of 16 peak and 16 foot drive
beams at one polar angle of 79 degrees
for an HIFTF options using multiple-beam
linacs (left) and single-beam linacs (right).

64 Peak-drive accelerators e=
Peak-drive drift compression lines
64 Foot-drive accelerators e——
Foot-drive drift compression lines

(4) New pulsed-jet valve capability would enable thick liquid Flibe
protection like HYLIFE to be adapted to direct drive chambers

i - & |

[R. Moir, LLNL, 1999 HYLIFE note.

Water fountain pictures from http://videos.komando.com/2008/08/19/water-painting/].
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-> Peter Seidl will be organizing HIF “Renew” workshops (soon-dates TBD)

"Pulsed jets (Moir: 1999 HYLIFE notes) merge radially halfway into chamber, forming a 30-cm
thick liquid imploding shell with annular beam access around the axis at shot time, @ 4 angles.

"Liquid shell mass and momentum sufficient that pocket pressurization due to non-neutron fusion
vield slows but does not reverse the liquid radial velocities of all but the slowest upward jets.

= Jet velocities decrease with polar angle for net momentum of the liquid and post-shot vapor to vent

downwards to clear the chamber.

30 MW, gross

HIFTF

0.8m radius chamber
306 kJ direct drive
6kJ Foot-64 beams

~10-20 MV K°*

300kJ Peak-64 beams
~50-100 MV Rb®*
12.5 MJ DT yield

6 Hz, n~13% driver

-14 MW _ linac driver
-1.5 MW _ focus mags
-1.5 MW _ flibe pumps
=13 MW,_ net power Neony

using direct drive compression of DD fuel with

Advanced fuel HIF
Power Plant (HIFPP)

Conclusions:
->Heavy ion direct drive results so far look very encouraging .

->Much more theory, experiments and conceptual design are needed for:

=2-D and 3-D symmetry and Rayleigh Taylor stability studies.
»Graded DT->D=-> ablators for higher stopping power

=lon Beam brightness, neutralization, collective effects, stripping.
=Multiple-beam induction linacs for higher efficiency, lower cost

=0.7 [0.5 MHD +
0.4 thermal bottom|

357 MW gross

-42 MW _ linac driver
-8 MW, all magnets
-7 MW _ liquid pumps
=300 MW_ net power

DT spark plug.

1.4 m radius chamber
1.6 MJ direct drive:
Foot-64 beams
~20-40 MV K°*
Peak-128 beams
~100-200 MV Rb?*
100 MJ DD/DT yield
1.5 Blanket energy M
3.4 Hz, n~13% driver

=Development of RF wobblers and time-dependent focus control for hollow-beam spots.

»Pulsed liquid jet control experiments for direct-drive chamber protection.

Chamberradius=1.2m

Wall loading = 0.3 MW/m?

Blanket fission power density = 1 MW/m?
Uranium fuel mass = 1.3 tons

Concept for thick-liguid-protected
HIFTF chamber for polar direct drive

Downward iets 6 A Polar axis (dotted ellipses
1520 | below indicate jet and beam

Hz, ~12 m/s ) )
Annular array of annuli symmetric about the
axis)

beams at 37 deg

Cryo targets in 6000K ” 8T HTSC
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Concept for Advanced T-Lean (Mostly DD)
HIF power plant to produce plasma for MHD
direct conversion
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