What are the main issues?

accelerator issues

- switchyard or moving experiments
- time-dependent focusing
- interface between the accelerator and neutralized drift

focusing issues

- solenoid or quadrupole focusing
- charge-state spread
- adiabatic plasma lens

plasma issues

- beam-plasma interaction and stability
- dipole and quadrupole fields in plasmas
- atomic physics (stripping, charge exchange, energy loss)

system issues

- requirements on momentum tilt Δp_z and thermal spread δp_z
- beam combining
- flexibility of beam parameters

interface issues with accelerator

What's in our toolbox for focusing and compression?

neutralized compression large stationary solenoid lens for final focus. dipoles for

- stopping electrons
- switch yard
- achromatic mutibeam concept
- must work in plasmas
 solenoid to suppress instabilities
 pulsed lenses to compensate chromatic problem from tilt
 adiabatic funnel close to experiments
 large convergence angle to obtain small focal spot

How important is scattering of beam ions?

small-angle scattering increases emittance only moderately

assume hydrogen plasma

$$\left(\frac{d\langle\theta^2\rangle}{dz}\right)_{scat} = \frac{(n_e + n_p)8\pi q_b^2 e^4}{p_b^2 v_b^2 (4\pi\varepsilon_0)^2} \ln\Lambda \quad (\ln\Lambda = 16).$$

emittance increase

$$\frac{d\varepsilon^2}{dz} = 2a_b^2 \left(\frac{d\langle\theta^2\rangle}{dz}\right)_{scat}$$

• consider
$$n_p = 10^{21} m^{-3} (\text{large}), 20 Mev Ne \ (q_b = 10),$$
 $a_b = 0.01 m, 10 m \text{ propogation}$
$$\Delta(\varepsilon^2) = (1.45 \times 10^{-5} m - r)^2$$

marginal effect!

How effective is plasma neutralization?

Consider $1\mu \times C$, 6.3×10^{12} ions, Charge state + 7, $10 \times$ electrons 4.4×10^{14} electrons in beam pulse.

Required n_e in the pulse $<< 10^{15} cm^{-3}$, except very close to the target.

For example
$$n_e = 10^{15} cm^{-3}$$
, $\omega_{pe} = \sqrt{\frac{n_e e^2}{4\pi \varepsilon_0 m_e}} = 5 \times 10^{11} s^{-1}$,

$$\omega_{pe} \tau_p >> 1$$
 always.

charge and current neutralization should be good, except for

- possible two-stream instability
- possible charge separation in bends and quads
- effects of plasma non-uniformity
- making an extended hydrogen plasma may challenging

Is two-stream instability likely to be a problem?

two-stream instability for dispersion relation for azimuthal mode I=1

$$[(\omega - k_z V_b + i k_z v_{Tb})^2 - \omega_b^2][(\omega + i k_z v_{Te})^2 - \omega_e^2] = \omega_f^2$$

Unlike the classical two-stream instability, transverse dynamics is important. Damping mechanisms and nonlinear stage of the instability are nontrivial.

Can we apply a time-dependent chromatic correction to a beam in a plasma?

test problem for solenoidal penetration into a plasma

- 10-cm radius 10¹¹ cm⁻³ C⁺¹ plasma in a 15-cm tube
- 14-15-cm radius solenoid
- B_z field ramps from 0.15 to 1.5 kG in 100 ns
- $\beta = 10^{-3}$

NDCX Transport: ndcx.lsp - Wed Oct 27 06:55:40 2004

Plasma density at 10 ns

The Heavy Ion Fusion Virtual National Laboratory

Field for plasma and vacuum cases

field ramps from 50-500 G in first 100 ns

without plasma

with plasma

Low-beta plasma is sqeezed radially

field penetration is small result is a lumpy mess

correction in plasma may not be possible

The Heavy Ion Fusion Virtual National Laboratory

What is the effect of a transverse field on the beam?

from MHD, electron equation of motion is basically E x B

$$E + v_e \times B \approx 0$$

for perfect current neutralization,

$$v_e = v_b \frac{n_b}{n_e}$$

the induced transverse electron field for applied B_v is then

$$E_x \approx v_b \frac{n_b}{n_p} B_y$$

this electric force acts to oppose $v_b B_v$

force is reduced from that of applied field by the ratio of densities

How good is this model?

LSP *x-y* simulation shows transverse field is close to prediction parameters:

- $N_b = 7x10^{10} \text{ cm}^{-3}$, 220 MeV, Ne^{+1} beam 10-cm across
- 3x10¹¹ cm⁻³ plasma (1-cm skin depth)
- uniform $B_v = 2000$ G deflects beam down

Current neutralization is not complete in bend

theory predicts roughly 20 kV/cm - roughly that calculated within beam self-B_y is also calculated of order 400 G net self-Lorentz force is small except at beam edge (skin depth effect)

net self-force is weak, so static transverse magnetic field may be OK

, (self + applied)

How does plasma density affect compression?

longitudinal compression approaches ballistic for large n_p/n_b parameters:

- 780-A, 110-ns, 20-cm Ne⁺¹ beam with L = 5450 cm
- 10% head-to-tail velocity tilt with 0.1% random v_{τ} variation
- $n_b = 10^9 \text{ cm}^{-3}$; $n_p = 6x10^8 4x10^{10} \text{ cm}^{-3}$, $T_0 = 3 \text{ eV}$
- $\Delta z = 0.5 \text{ c}\beta$ / ω_p , $\Delta t = 1/5\omega_p$ for all simulations resolves 2-stream

The Heavy Ion Fusion Virtual National Laboratory

What does two-stream do to the beam phase space?

1200 ns 1200 ns 2.5x10⁹ cm⁻³ 0.165 0.165 **ballistic** too low a density densitv transport results in space plasma 0.160 charge spreading 0.160 saturation of two- > 0.155 stream growth leads to tolerable 0.150 0.150 momentum spread 5260 5270 5280 5290 5300 5260 5270 5280 5290 5300 z (cm) z (cm) impact on transverse 1200 ns 1200 ns dynamics being 0.165 0.165 1.0x10¹⁰ cm⁻³ 4x10¹⁰ cm⁻³ investigated density density plasmá plasmá 0.160 0.160 0.155 0.155 0.150 0.150 5290 5300 5270 5280 5290 5300 5260 5270 5280 5260 z (cm) z (cm)

What constrains the initial beam temperature?

best case assumes ballistic compression

- no scattering, stripping, or energy loss
- assume uniform momentum spread δp_z

for a given compression ratio L_i/L_f and head-to-tail momentum tilt Δp_z

$$L_i/L_f = \Delta p_z/\delta p_z$$

for 100:1 compression and $\Delta p_z/p_z = 0.1$, $\delta p_z/p_z$ must be 0.001 or less for 20 MeV beam, longitudinal temperature must be less than 40 keV

Seems possible!

What about plasma lenses?

adiabatic plasma lenses offer important advantages

- tenfold increase in final beam intensity
- larger momentum acceptance than magnetic lenses
- predictable beam dynamics

$$\left(\frac{\varepsilon}{a}\right)^2 = 2\frac{I}{I_A}$$

key issue is technology of building small lens

Several final focusing options considered for BB-TWA

final tilt imposed by last helix segment 30-cm pulse implies a short drift compression section (few m) Q at output $\sim 2x10^{-3}$ @ 20 MeV options:

Helix -> Strong Sol's -> Dipole -> Strip to +7 -> 1 T NDC -> 15 T Sol -> Tgt (match from ~ 3 cm to ~ 1 cm radius for NDC)

Helix -> Dipole -> Opt. Strip -> Graded Sol NDC -> 15 T Sol -> Tgt (beam radius reduced gradually during NDC, no match section)

Helix -> Graded Sol -> 15 T Sol -> Tgt (plasma builds up along line, gradually)

MAP He+ diode final focus

- 6.0 J into 1 cm spot
- **⋄** ∆V negligible
- short solenoid lens:

$$B = 2.0 T$$

L = 0.04 m

 $\theta \sim 180 \text{ mR half-angle}$

- **♦** Focal Length = 5.5 cm
- \otimes ϵ =1.8 x 10⁻⁴ mR (assumed)
- $r_s = 1.0 \text{ mm}$

